Da
Revaluation Books, Exeter, Regno Unito
Valutazione del venditore 5 su 5 stelle
Venditore AbeBooks dal 6 gennaio 2003
52 pages. 8.66x5.91x0.12 inches. In Stock. Codice articolo 3659921718
Speaker Recognition is used for identification of a person depending on the characteristics contained in the speech signal. In this paper we propose the use of Deep Neural Network (DNN) for text dependent speaker Recognition system (SRS). Mel Frequency Cepstral Coefficients (MFCC) and Auto-encoder (Butterfly Structure Neural Network) are used to extract the features of speech signal at the initial stage. The previously obtained coefficients are then used to train the DNN to later classify the speakers. DNN can be directly used to extract features and classify speakers but the MFCC and Auto-encoder are used initially for data compression and maximum number of feature extraction thus aiming to get better efficiency and faster results.
Titolo: Text Dependent Speaker Recognition using ...
Casa editrice: LAP LAMBERT Academic Publishing
Data di pubblicazione: 2018
Legatura: Paperback
Condizione: Brand New
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Suthar AnilkumarDr. Anilkumar Suthar is a Supervisor and Director of L J Institute of Engineering & Technology.Ms.K.Kansara is Post Graduate student in Department of Electronics & Communication Engineering.Speaker Recognition is . Codice articolo 385770807
Quantità: Più di 20 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Text Dependent Speaker Recognition using Deep Neural Networks | Anilkumar Suthar | Taschenbuch | 52 S. | Englisch | 2018 | LAP LAMBERT Academic Publishing | EAN 9783659921711 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Codice articolo 114692494
Quantità: 5 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Speaker Recognition is used for identification of a person depending on the characteristics contained in the speech signal. In this paper we propose the use of Deep Neural Network (DNN) for text dependent speaker Recognition system (SRS). Mel Frequency Cepstral Coefficients (MFCC) and Auto-encoder (Butterfly Structure Neural Network) are used to extract the features of speech signal at the initial stage. The previously obtained coefficients are then used to train the DNN to later classify the speakers. DNN can be directly used to extract features and classify speakers but the MFCC and Auto-encoder are used initially for data compression and maximum number of feature extraction thus aiming to get better efficiency and faster results. Codice articolo 9783659921711
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Speaker Recognition is used for identification of a person depending on the characteristics contained in the speech signal. In this paper we propose the use of Deep Neural Network (DNN) for text dependent speaker Recognition system (SRS). Mel Frequency Cepstral Coefficients (MFCC) and Auto-encoder (Butterfly Structure Neural Network) are used to extract the features of speech signal at the initial stage. The previously obtained coefficients are then used to train the DNN to later classify the speakers. DNN can be directly used to extract features and classify speakers but the MFCC and Auto-encoder are used initially for data compression and maximum number of feature extraction thus aiming to get better efficiency and faster results. 52 pp. Englisch. Codice articolo 9783659921711
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Speaker Recognition is used for identification of a person depending on the characteristics contained in the speech signal. In this paper we propose the use of Deep Neural Network (DNN) for text dependent speaker Recognition system (SRS). Mel Frequency Cepstral Coefficients (MFCC) and Auto-encoder (Butterfly Structure Neural Network) are used to extract the features of speech signal at the initial stage. The previously obtained coefficients are then used to train the DNN to later classify the speakers. DNN can be directly used to extract features and classify speakers but the MFCC and Auto-encoder are used initially for data compression and maximum number of feature extraction thus aiming to get better efficiency and faster results.Books on Demand GmbH, Überseering 33, 22297 Hamburg 52 pp. Englisch. Codice articolo 9783659921711
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26394692381
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 401684674
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18394692375
Quantità: 4 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
paperback. Condizione: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Codice articolo ERICA82936599217186
Quantità: 1 disponibili