Advanced Markov Chain Monte Carlo Methods (Hardcover)
Faming Liang
Venduto da CitiRetail, Stevenage, Regno Unito
Venditore AbeBooks dal 29 giugno 2022
Nuovi - Rilegato
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloVenduto da CitiRetail, Stevenage, Regno Unito
Venditore AbeBooks dal 29 giugno 2022
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloHardcover. Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems.A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants.Up-to-date accounts of recent developments of the Gibbs sampler.Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial. * Presents the latest developments in Monte Carlo research. * Provides a toolkit for simulating complex systems using MCMC. * Introduces a wide range of algorithms including Gibbs sampler, Metropolis-Hastings and an overview of sequential Monte Carlo algorithms. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Codice articolo 9780470748268
Key Features:
This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.
Faming Liang, Associate Professor, Department of Statistics, Texas A&M University.
Chuanhai Liu, Professor, Department of Statistics, Purdue University.
Raymond J. Carroll, Distinguished Professor, Department of Statistics, Texas A&M University.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Orders can be returned within 30 days of receipt.
Please note that titles are dispatched from our US, Canadian or Australian warehouses. Delivery times specified in shipping terms. Orders ship within 2 business days. Delivery to your door then takes 7-14 days.
Quantità dell?ordine | Da 7 a 60 giorni lavorativi | Da 7 a 14 giorni lavorativi |
---|---|---|
Primo articolo | EUR 42.38 | EUR 42.38 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.