This work covers material for an introductory course in the theory of dynamical systems. There is a short tutorial in MAPLE to facilitate the understanding of the theory. The text is divided into two parts: continuous systems using differential equations and discrete dynamical systems. Differential equations are used to model examples taken from various topics such as mechanical systems, interacting species, electronic circuits, chemical reactions, and meterology. The second part of the text deals with real and complex dynamical systems. Examples are taken from population modelling, nonlinear optics, and materials science. Linear algebra and real and complex analysis are prerequisites.
"The text treats a remarkable spectrum of topics and has a little for everyone. It can serve as an introduction to many of the topics of dynamical systems, and will help even the most jaded reader, such as this reviewer, enjoy some of the interactive aspects of studying dynamics using Maple."
―UK Nonlinear News (Review of First Edition)
"The book will be useful for all kinds of dynamical systems courses…. [It] shows the power of using a computer algebra program to study dynamical systems, and, by giving so many worked examples, provides ample opportunity for experiments. … [It] is well written and a pleasure to read, which is helped by its attention to historical background."
―Mathematical Reviews (Review of First Edition)
Since the first edition of this book was published in 2001, Maple™ has evolved from Maple V into Maple 13. Accordingly, this new edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions; two new chapters on neural networks and simulation have also been added. There are also new sections on perturbation methods, normal forms, Gröbner bases, and chaos synchronization.
The work provides an introduction to the theory of dynamical systems with the aid of Maple. The author has emphasized breadth of coverage rather than fine detail, and theorems with proof are kept to a minimum. Some of the topics treated are scarcely covered elsewhere. Common themes such as bifurcation, bistability, chaos, instability, multistability, and periodicity run through several chapters.
The book has a hands-on approach, using Maple as a pedagogical tool throughout. Maple worksheet files are listed at the end of each chapter, and along with commands, programs, and output may be viewed in color at the author’s website. Additional applications and further links of interest may be found atMaplesoft’s Application Center.
Dynamical Systems with Applications using Maple is aimed at senior undergraduates, graduate students, and working scientists in various branches of applied mathematics, the natural sciences, and engineering.
ISBN 978-0-8176-4389-8
§
Also by the author:
Dynamical Systems with Applications using MATLAB®, ISBN 978-0-8176-4321-8
Dynamical Systems with Applications using Mathematica®, ISBN 978-0-8176-4482-6