Federated Learning: Privacy and Incentive

Yang, Qiang

ISBN 10: 3030630757 ISBN 13: 9783030630751
Editore: Springer, 2020
Nuovi Brossura

Da Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 27 febbraio 2001

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

2020. 1st ed. 2020. paperback. . . . . . Codice articolo V9783030630751

Segnala questo articolo

Riassunto:

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications.

Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.

This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”

 


Dalla quarta di copertina: This book provides a comprehensive and self-contained introduction to Federated Learning, ranging from the basic knowledge and theories to various key applications, and the privacy and incentive factors are the focus of the whole book. This book is timely needed since Federated Learning is getting popular after the release of the General Data Protection Regulation (GDPR). As Federated Learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.

This book contains three main parts. First, it introduces different privacy-preserving methods for protecting a Federated Learning model against different types of attacks such as Data Leakage and/or Data Poisoning. Second, the book presents incentive mechanisms which aim to encourage individuals to participate in the Federated Learning ecosystems. Last but not the least, this book also describeshow Federated Learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both academia and industries, who would like to learn federated learning from scratch, practice its implementation, and apply it in their own business.

Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing are preferred.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Federated Learning: Privacy and Incentive
Casa editrice: Springer
Data di pubblicazione: 2020
Legatura: Brossura
Condizione: New
Edizione: prima edizione

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Yang, Qiang|Fan, Lixin|Yu, Han
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a comprehensive and self-contained introduction to Federated LearningPopular topic for GDPRCovers learning, implementation and practice of Federated LearningProvides a comprehensive and self-contained introduction to Fe. Codice articolo 417775895

Contatta il venditore

Compra nuovo

EUR 74,71
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Yang, Qiang
Editore: Springer 2020-11, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9783030630751

Contatta il venditore

Compra nuovo

EUR 74,83
Convertire valuta
Spese di spedizione: EUR 17,74
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yang, Qiang (EDT); Fan, Lixin (EDT); Yu, Han (EDT)
Editore: Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 42385911-n

Contatta il venditore

Compra nuovo

EUR 77,77
Convertire valuta
Spese di spedizione: EUR 17,18
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783030630751_new

Contatta il venditore

Compra nuovo

EUR 78,35
Convertire valuta
Spese di spedizione: EUR 13,72
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yang, Qiang (EDT); Fan, Lixin (EDT); Yu, Han (EDT)
Editore: Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 42385911

Contatta il venditore

Compra usato

EUR 83,11
Convertire valuta
Spese di spedizione: EUR 2,27
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020024717

Contatta il venditore

Compra nuovo

EUR 84,79
Convertire valuta
Spese di spedizione: EUR 3,43
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yang, Qiang (EDT); Fan, Lixin (EDT); Yu, Han (EDT)
Editore: Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Antico o usato Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 42385911

Contatta il venditore

Compra usato

EUR 85,38
Convertire valuta
Spese di spedizione: EUR 17,18
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Qiang Yang
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, andneural network. Additionally, domain knowledge in FinTech and marketing would be helpful.' 296 pp. Englisch. Codice articolo 9783030630751

Contatta il venditore

Compra nuovo

EUR 85,59
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Qiang Yang
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications.Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.¿Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 296 pp. Englisch. Codice articolo 9783030630751

Contatta il venditore

Compra nuovo

EUR 85,59
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yang, Qiang (EDT); Fan, Lixin (EDT); Yu, Han (EDT)
Editore: Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 42385911-n

Contatta il venditore

Compra nuovo

EUR 85,97
Convertire valuta
Spese di spedizione: EUR 2,27
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 6 copie di questo libro

Vedi tutti i risultati per questo libro