Foundations of Global Genetic Optimization (Paperback)

Robert Schaefer

ISBN 10: 364209225X ISBN 13: 9783642092251
Editore: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2010
Nuovi Paperback

Da AussieBookSeller, Truganina, VIC, Australia Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 22 giugno 2007

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Paperback. This book is devoted to the application of genetic algorithms in continuous global optimization. Some of their properties and behavior are highlighted and formally justified. Various optimization techniques and their taxonomy are the background for detailed discussion. The nature of continuous genetic search is explained by studying the dynamics of probabilistic measure, which is utilized to create subsequent populations. This approach shows that genetic algorithms can be used to extract some areas of the search domain more effectively than to find isolated local minima. The biological metaphor of such behavior is the whole population surviving by rapid exploration of new regions of feeding rather than caring for a single individual. One group of strategies that can make use of this property are two-phase global optimization methods. In the first phase the central parts of the basins of attraction are distinguished by genetic population analysis. Afterwards, the minimizers are found by convex optimization methods executed in parallel. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Codice articolo 9783642092251

Segnala questo articolo

Riassunto:

Genetic algorithms today constitute a family of e?ective global optimization methods used to solve di?cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon?rmedinpart- ular by the many species of animals and plants that are well ?tted to di?erent ecological niches. They direct the search process, making it more e?ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti?cial intelligence methods which introduce heuristics, well tested in other ?elds, to the classical scheme of stochastic global search.

Dalla quarta di copertina:

This book is devoted to the application of genetic algorithms in continuous global optimization. Some of their properties and behavior are highlighted and formally justified. Various optimization techniques and their taxonomy are the background for detailed discussion. The nature of continuous genetic search is explained by studying the dynamics of probabilistic measure, which is utilized to create subsequent populations. This approach shows that genetic algorithms can be used to extract some areas of the search domain more effectively than to find isolated local minima. The biological metaphor of such behavior is the whole population surviving by rapid exploration of new regions of feeding rather than caring for a single individual. One group of strategies that can make use of this property are two-phase global optimization methods. In the first phase the central parts of the basins of attraction are distinguished by genetic population analysis. Afterwards, the minimizers are found by convex optimization methods executed in parallel.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Foundations of Global Genetic Optimization (...
Casa editrice: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin
Data di pubblicazione: 2010
Legatura: Paperback
Condizione: new
Edizione: prima edizione

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Robert Schaefer
ISBN 10: 364209225X ISBN 13: 9783642092251
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents the foundations of global genetic optimizationGenetic algorithms today constitute a family of e?ective global optimization methods used to solve di?cult real-life problems which arise in science and technology. Despite their computationa. Codice articolo 5048244

Contatta il venditore

Compra nuovo

EUR 92,27
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Robert Schaefer
Editore: Springer Vieweg, 2010
ISBN 10: 364209225X ISBN 13: 9783642092251
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Foundations of Global Genetic Optimization | Robert Schaefer | Taschenbuch | xi | Englisch | 2010 | Springer Vieweg | EAN 9783642092251 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 107211530

Contatta il venditore

Compra nuovo

EUR 95,80
Spese di spedizione: EUR 70,00
Da: Germania a: U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Schaefer, Robert
Editore: Springer, 2010
ISBN 10: 364209225X ISBN 13: 9783642092251
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020217670

Contatta il venditore

Compra nuovo

EUR 103,78
Spese di spedizione: EUR 3,46
In U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Robert Schaefer
ISBN 10: 364209225X ISBN 13: 9783642092251
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Genetic algorithms today constitute a family of e ective global optimization methods used to solve di cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon rmedinpart- ular by the many species of animals and plants that are well tted to di erent ecological niches. They direct the search process, making it more e ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti cial intelligence methods which introduce heuristics, well tested in other elds, to the classical scheme of stochastic global search. Codice articolo 9783642092251

Contatta il venditore

Compra nuovo

EUR 106,99
Spese di spedizione: EUR 61,83
Da: Germania a: U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Robert Schaefer
ISBN 10: 364209225X ISBN 13: 9783642092251
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Genetic algorithms today constitute a family of e ective global optimization methods used to solve di cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon rmedinpart- ular by the many species of animals and plants that are well tted to di erent ecological niches. They direct the search process, making it more e ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti cial intelligence methods which introduce heuristics, well tested in other elds, to the classical scheme of stochastic global search. 236 pp. Englisch. Codice articolo 9783642092251

Contatta il venditore

Compra nuovo

EUR 106,99
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Robert Schaefer
ISBN 10: 364209225X ISBN 13: 9783642092251
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Genetic algorithms today constitute a family of e ective global optimization methods used to solve di cult real-life problems which arise in science and technology. Despite their computational complexity, they have the ability to explore huge data sets and allow us to study exceptionally problematic cases in which the objective functions are irregular and multimodal, and where information about the extrema location is unobtainable in other ways. Theybelongtotheclassofiterativestochasticoptimizationstrategiesthat, during each step, produce and evaluate the set of admissible points from the search domain, called the random sample or population. As opposed to the Monte Carlo strategies, in which the population is sampled according to the uniform probability distribution over the search domain, genetic algorithms modify the probability distribution at each step. Mechanisms which adopt sampling probability distribution are transposed from biology. They are based mainly on genetic code mutation and crossover, as well as on selection among living individuals. Such mechanisms have been testedbysolvingmultimodalproblemsinnature,whichiscon rmedinpart- ular by the many species of animals and plants that are well tted to di erent ecological niches. They direct the search process, making it more e ective than a completely random one (search with a uniform sampling distribution). Moreover,well-tunedgenetic-basedoperationsdonotdecreasetheexploration ability of the whole admissible set, which is vital in the global optimization process. The features described above allow us to regard genetic algorithms as a new class of arti cial intelligence methods which introduce heuristics, well tested in other elds, to the classical scheme of stochastic global search.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 236 pp. Englisch. Codice articolo 9783642092251

Contatta il venditore

Compra nuovo

EUR 106,99
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Schaefer, Robert
Editore: Springer, 2010
ISBN 10: 364209225X ISBN 13: 9783642092251
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783642092251_new

Contatta il venditore

Compra nuovo

EUR 134,04
Spese di spedizione: EUR 13,66
Da: Regno Unito a: U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Robert Schaefer
ISBN 10: 364209225X ISBN 13: 9783642092251
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 234 pages. 9.25x6.10x0.54 inches. In Stock. Codice articolo x-364209225X

Contatta il venditore

Compra nuovo

EUR 152,60
Spese di spedizione: EUR 11,40
Da: Regno Unito a: U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello