Lingua: Inglese
Editore: LAP LAMBERT Academic Publishing, 2022
ISBN 10: 6205514133 ISBN 13: 9786205514139
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New.
Lingua: Inglese
Editore: LAP LAMBERT Academic Publishing Nov 2022, 2022
ISBN 10: 6205514133 ISBN 13: 9786205514139
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 68,90
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neuware -Hyperspectral image classification is the most popular research area in the hyperspectral community and has attracted significant interest in remote sensing. HSI classification is a challenging task because of the large dimensionality of the data, inadequate datasets, huge data, and limited training samples. Several Deep Learning (DL) based architectures are being explored to resolve the aforementioned challenges and provide significant improvements in HSI data analysis. Limited studies have been presented in the literature in the direction of exploring deep learning architectures for joint spatial and spectral features to achieve high accuracy of pixel classification. This book presents different deep-learning approaches for efficient spatial-spectral features for the classification of pixels in HSI images.Books on Demand GmbH, Überseering 33, 22297 Hamburg 152 pp. Englisch.
Lingua: Inglese
Editore: LAP LAMBERT Academic Publishing, 2022
ISBN 10: 6205514133 ISBN 13: 9786205514139
Da: preigu, Osnabrück, Germania
EUR 58,65
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Deep Learning Classifiers for Hyperspectral Image Analysis | Murali Kanthi (u. a.) | Taschenbuch | Englisch | 2022 | LAP LAMBERT Academic Publishing | EAN 9786205514139 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Lingua: Inglese
Editore: LAP LAMBERT Academic Publishing Nov 2022, 2022
ISBN 10: 6205514133 ISBN 13: 9786205514139
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 68,90
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Hyperspectral image classification is the most popular research area in the hyperspectral community and has attracted significant interest in remote sensing. HSI classification is a challenging task because of the large dimensionality of the data, inadequate datasets, huge data, and limited training samples. Several Deep Learning (DL) based architectures are being explored to resolve the aforementioned challenges and provide significant improvements in HSI data analysis. Limited studies have been presented in the literature in the direction of exploring deep learning architectures for joint spatial and spectral features to achieve high accuracy of pixel classification. This book presents different deep-learning approaches for efficient spatial-spectral features for the classification of pixels in HSI images. 152 pp. Englisch.
Lingua: Inglese
Editore: LAP LAMBERT Academic Publishing, 2022
ISBN 10: 6205514133 ISBN 13: 9786205514139
Da: Majestic Books, Hounslow, Regno Unito
EUR 90,19
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Lingua: Inglese
Editore: LAP LAMBERT Academic Publishing, 2022
ISBN 10: 6205514133 ISBN 13: 9786205514139
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 93,08
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
Lingua: Inglese
Editore: LAP Lambert Academic Publishing, 2022
ISBN 10: 6205514133 ISBN 13: 9786205514139
Da: moluna, Greven, Germania
EUR 55,87
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Hyperspectral image classification is the most popular research area in the hyperspectral community and has attracted significant interest in remote sensing. HSI classification is a challenging task because of the large dimensionality of the data, inadequat.
Lingua: Inglese
Editore: LAP LAMBERT Academic Publishing, 2022
ISBN 10: 6205514133 ISBN 13: 9786205514139
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 69,73
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Hyperspectral image classification is the most popular research area in the hyperspectral community and has attracted significant interest in remote sensing. HSI classification is a challenging task because of the large dimensionality of the data, inadequate datasets, huge data, and limited training samples. Several Deep Learning (DL) based architectures are being explored to resolve the aforementioned challenges and provide significant improvements in HSI data analysis. Limited studies have been presented in the literature in the direction of exploring deep learning architectures for joint spatial and spectral features to achieve high accuracy of pixel classification. This book presents different deep-learning approaches for efficient spatial-spectral features for the classification of pixels in HSI images.