Editore: Springer (edition Softcover reprint of the original 1st ed. 1999), 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Lingua: Inglese
Da: BooksRun, Philadelphia, PA, U.S.A.
EUR 119,44
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloPaperback. Condizione: Very Good. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Softcover reprint of the original 1st ed. 1999.
Editore: Kluwer Academic/Plenum Publishers, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: Vintage Books and Fine Art, Oxford, MD, U.S.A.
EUR 136,95
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Very Good. Condizione sovraccoperta: Jacket not issued. Square Tight Binding.Clean interior, save for small p/o signature to top of front paste down. Mild rubbing and edge wear.
Editore: Kluwer Academic/Plenum Publishers, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 153,68
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 153,68
Convertire valutaQuantità: 15 disponibili
Aggiungi al carrelloCondizione: New.
EUR 148,12
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Editore: Kluwer Academic/Plenum Publishers, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: Best Price, Torrance, CA, U.S.A.
EUR 148,12
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Editore: Springer-Verlag New York Inc., New York, NY, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Lingua: Inglese
Da: Grand Eagle Retail, Mason, OH, U.S.A.
EUR 160,08
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A. This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 156,61
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Kluwer Academic/Plenum Publishers, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 157,01
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 158,60
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Kluwer Academic/Plenum Publishers, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: California Books, Miami, FL, U.S.A.
EUR 177,21
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Kluwer Academic/Plenum Publishers, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 164,62
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Springer Science+Business Media, New York, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: Grand Eagle Retail, Mason, OH, U.S.A.
EUR 180,27
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: new. Hardcover. This text provides an introduction to the theory of error-correcting codes and related topics in number theory, algebraic geometry and the theory of sphere packings. The material is presented in an easily understandable form. This book is devoted to geometric Goppa codes; the recently discovered areas which combines coding theory, algebraic geometry, number theory, and theory of sphere packings. It has an interdisciplinary nature and demonstrates the close interconnection of coding theory with various classical areas of mathematics. There are four main themes in the book, the first being a brief exposition of the basic concepts and facts of error-correcting code theory. The second is a complete presentation of the theory of algebraic curves; especially the curves defined over finite fields. The third is a detailed description of the theory of elliptic and modular codes, and their reductions modulo a prime number. The fourth is a construction of geometric Gappa codes producing rather long linear codes with very good parameters coming from algebraic curves, and with a lot of rational points. This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Da: Chiron Media, Wallingford, Regno Unito
EUR 162,24
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloHardcover. Condizione: New.
Editore: Kluwer Academic/Plenum Publishers, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 179,10
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Editore: Kluwer Academic/Plenum Publishers, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 164,61
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 183,74
Convertire valutaQuantità: 15 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
EUR 193,38
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. pp. 372.
Editore: Kluwer Academic/Plenum Publishers, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 179,85
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
EUR 206,16
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. pp. 368.
EUR 195,17
Convertire valutaQuantità: 15 disponibili
Aggiungi al carrelloCondizione: New. 2012. Paperback. . . . . .
EUR 201,99
Convertire valutaQuantità: 15 disponibili
Aggiungi al carrelloCondizione: New. 1999. 1999th Edition. Hardcover. . . . . .
Editore: Springer US, Springer New York Jul 1999, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 160,49
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Neuware -This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 372 pp. Englisch.
EUR 164,49
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.
EUR 122,71
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Editore: Springer US, Springer New York, 1999
ISBN 10: 0306461447 ISBN 13: 9780306461446
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 166,62
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A.
EUR 243,27
Convertire valutaQuantità: 15 disponibili
Aggiungi al carrelloCondizione: New. 2012. Paperback. . . . . . Books ship from the US and Ireland.
EUR 251,81
Convertire valutaQuantità: 15 disponibili
Aggiungi al carrelloCondizione: New. 1999. 1999th Edition. Hardcover. . . . . . Books ship from the US and Ireland.
EUR 232,14
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 363 pages. 9.02x5.98x0.83 inches. In Stock.
Editore: Springer-Verlag New York Inc., New York, NY, 2012
ISBN 10: 1461371678 ISBN 13: 9781461371670
Lingua: Inglese
Da: AussieBookSeller, Truganina, VIC, Australia
EUR 285,50
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. There are four main divisions in the book. The first is a brief exposition of basic concepts and facts of the theory of error-correcting codes (Part I). The second is a complete presentation of the theory of algebraic curves, especially the curves defined over finite fields (Part II). The third is a detailed description of the theory of classical modular curves and their reduction modulo a prime number (Part III). The fourth (and basic) is the construction of geometric Goppa codes and the production of asymptotically good linear codes coming from algebraic curves over finite fields (Part IV). The theory of geometric Goppa codes is a fascinating topic where two extremes meet: the highly abstract and deep theory of algebraic (specifically modular) curves over finite fields and the very concrete problems in the engineering of information transmission. At the present time there are two essentially different ways to produce asymptotically good codes coming from algebraic curves over a finite field with an extremely large number of rational points. The first way, developed by M. A. Tsfasman, S. G. Vladut and Th. Zink [210], is rather difficult and assumes a serious acquaintance with the theory of modular curves and their reduction modulo a prime number. The second way, proposed recently by A. This is a self-contained introduction to algebraic curves over finite fields and geometric Goppa codes. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.