Search preferences
Vai alla pagina principale dei risultati di ricerca

Filtri di ricerca

Tipo di articolo

  • Tutti i tipi di prodotto 
  • Libri (8)
  • Riviste e Giornali (Nessun altro risultato corrispondente a questo perfezionamento)
  • Fumetti (Nessun altro risultato corrispondente a questo perfezionamento)
  • Spartiti (Nessun altro risultato corrispondente a questo perfezionamento)
  • Arte, Stampe e Poster (Nessun altro risultato corrispondente a questo perfezionamento)
  • Fotografie (Nessun altro risultato corrispondente a questo perfezionamento)
  • Mappe (Nessun altro risultato corrispondente a questo perfezionamento)
  • Manoscritti e Collezionismo cartaceo (Nessun altro risultato corrispondente a questo perfezionamento)

Condizioni Maggiori informazioni

  • Nuovo (8)
  • Come nuovo, Ottimo o Quasi ottimo (Nessun altro risultato corrispondente a questo perfezionamento)
  • Molto buono o Buono (Nessun altro risultato corrispondente a questo perfezionamento)
  • Discreto o Mediocre (Nessun altro risultato corrispondente a questo perfezionamento)
  • Come descritto (Nessun altro risultato corrispondente a questo perfezionamento)

Ulteriori caratteristiche

  • Prima ed. (Nessun altro risultato corrispondente a questo perfezionamento)
  • Copia autograf. (Nessun altro risultato corrispondente a questo perfezionamento)
  • Sovracoperta (Nessun altro risultato corrispondente a questo perfezionamento)
  • Con foto (8)
  • Non Print on Demand (8)

Lingua (1)

Prezzo

Fascia di prezzo personalizzata (EUR)

Spedizione gratuita

  • Spedizione gratuita in U.S.A. (Nessun altro risultato corrispondente a questo perfezionamento)

Paese del venditore

  • Marc Peter Deisenroth

    Editore: Cambridge University Pr. Apr 2020, 2020

    ISBN 10: 110845514X ISBN 13: 9781108455145

    Lingua: Inglese

    Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 23,00 per la spedizione da Germania a U.S.A.

    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Taschenbuch. Condizione: Neu. Neuware -The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. 371 pp. Englisch.

  • Marc Peter Deisenroth

    Editore: Cambridge University Pr. Apr 2020, 2020

    ISBN 10: 110845514X ISBN 13: 9781108455145

    Lingua: Inglese

    Da: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 23,00 per la spedizione da Germania a U.S.A.

    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Taschenbuch. Condizione: Neu. Neuware -The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. 371 pp. Englisch.

  • Marc Peter Deisenroth

    Editore: Cambridge University Pr. Apr 2020, 2020

    ISBN 10: 110845514X ISBN 13: 9781108455145

    Lingua: Inglese

    Da: Wegmann1855, Zwiesel, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 25,95 per la spedizione da Germania a U.S.A.

    Destinazione, tempi e costi

    Quantità: 2 disponibili

    Aggiungi al carrello

    Taschenbuch. Condizione: Neu. Neuware -The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For studentsand otherswith a mathematical background, these derivations provide a starting point to machine learning texts. Forthoselearning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

  • Chirag Shah

    Editore: Cambridge University Pr. Apr 2020, 2020

    ISBN 10: 1108472443 ISBN 13: 9781108472449

    Lingua: Inglese

    Da: Wegmann1855, Zwiesel, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 25,95 per la spedizione da Germania a U.S.A.

    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Buch. Condizione: Neu. Neuware -This book introduces the field of data science in a practical and accessible manner, using a hands-on approach that assumes no prior knowledge of the subject. The foundational ideas and techniques of data science are provided independently from technology, allowing students to easily develop a firm understanding of the subject without a strong technical background, as well as being presented with material that will have continual relevance even after tools and technologies change. Using popular data science tools such as Python and R, the book offers many examples of real-life applications, with practice ranging from small to big data. A suite of online material for both instructors and students provides a strong supplement to the book, including datasets, chapter slides, solutions, sample exams and curriculum suggestions. This entry-level textbook is ideally suited to readers from a range of disciplines wishing to build a practical, working knowledge of data science.

  • Marcos M. López de Prado

    Editore: Cambridge University Pr. Apr 2020, 2020

    ISBN 10: 1108792898 ISBN 13: 9781108792899

    Lingua: Inglese

    Da: AHA-BUCH GmbH, Einbeck, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 61,15 per la spedizione da Germania a U.S.A.

    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Taschenbuch. Condizione: Neu. Neuware - Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to 'learn complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.

  • Marc Peter Deisenroth

    Editore: Cambridge University Pr. Apr 2020, 2020

    ISBN 10: 110845514X ISBN 13: 9781108455145

    Lingua: Inglese

    Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 60,00 per la spedizione da Germania a U.S.A.

    Destinazione, tempi e costi

    Quantità: 2 disponibili

    Aggiungi al carrello

    Taschenbuch. Condizione: Neu. Neuware -The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For studentsand otherswith a mathematical background, these derivations provide a starting point to machine learning texts. Forthoselearning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.Libri GmbH, Europaallee 1, 36244 Bad Hersfeld 371 pp. Englisch.

  • Chirag Shah

    Editore: Cambridge University Pr. Apr 2020, 2020

    ISBN 10: 1108472443 ISBN 13: 9781108472449

    Lingua: Inglese

    Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 60,00 per la spedizione da Germania a U.S.A.

    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Buch. Condizione: Neu. Neuware -This book introduces the field of data science in a practical and accessible manner, using a hands-on approach that assumes no prior knowledge of the subject. The foundational ideas and techniques of data science are provided independently from technology, allowing students to easily develop a firm understanding of the subject without a strong technical background, as well as being presented with material that will have continual relevance even after tools and technologies change. Using popular data science tools such as Python and R, the book offers many examples of real-life applications, with practice ranging from small to big data. A suite of online material for both instructors and students provides a strong supplement to the book, including datasets, chapter slides, solutions, sample exams and curriculum suggestions. This entry-level textbook is ideally suited to readers from a range of disciplines wishing to build a practical, working knowledge of data science.Libri GmbH, Europaallee 1, 36244 Bad Hersfeld 400 pp. Englisch.

  • Marc Peter Deisenroth

    Editore: Cambridge University Pr. Apr 2020, 2020

    ISBN 10: 110845514X ISBN 13: 9781108455145

    Lingua: Inglese

    Da: AHA-BUCH GmbH, Einbeck, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 64,05 per la spedizione da Germania a U.S.A.

    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Taschenbuch. Condizione: Neu. Neuware - The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.