Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition.
Da: Majestic Books, Hounslow, Regno Unito
EUR 65,36
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 334.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New.
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 334 1st edition NO-PA16APR2015-KAP.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 65,79
Quantità: 10 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 70,09
Quantità: 10 disponibili
Aggiungi al carrelloCondizione: New.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 75,95
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 334.
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 70,10
Quantità: 1 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days.
EUR 64,91
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 60,60
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Data Analysis Using Hierarchical Generalized Linear Models with R | Youngjo Lee (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2020 | Taylor & Francis | EAN 9780367657925 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 199,24
Quantità: 1 disponibili
Aggiungi al carrellopaperback. Condizione: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Lingua: Inglese
Editore: Taylor & Francis, Chapman And Hall/CRC, 2020
ISBN 10: 0367657929 ISBN 13: 9780367657925
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 62,40
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Since their introduction, hierarchical generalized linear models (HGLMs) have proven useful in various fields by allowing random effects in regression models. Interest in the topic has grown, and various practical analytical tools have been developed. This book summarizes developments within the field and, using data examples, illustrates how to analyse various kinds of data using R. It provides a likelihood approach to advanced statistical modelling including generalized linear models with random effects, survival analysis and frailty models, multivariate HGLMs, factor and structural equation models, robust modelling of random effects, models including penalty and variable selection and hypothesis testing.This example-driven book is aimed primarily at researchers and graduate students, who wish to perform data modelling beyond the frequentist framework, and especially for those searching for a bridge between Bayesian and frequentist statistics. 334 pp. Englisch.
Lingua: Inglese
Editore: Taylor & Francis, Chapman And Hall/CRC, 2020
ISBN 10: 0367657929 ISBN 13: 9780367657925
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 72,32
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Since their introduction, hierarchical generalized linear models (HGLMs) have proven useful in various fields by allowing random effects in regression models. Interest in the topic has grown, and various practical analytical tools have been developed. This book summarizes developments within the field and, using data examples, illustrates how to analyse various kinds of data using R. It provides a likelihood approach to advanced statistical modelling including generalized linear models with random effects, survival analysis and frailty models, multivariate HGLMs, factor and structural equation models, robust modelling of random effects, models including penalty and variable selection and hypothesis testing.This example-driven book is aimed primarily at researchers and graduate students, who wish to perform data modelling beyond the frequentist framework, and especially for those searching for a bridge between Bayesian and frequentist statistics.