Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 245,07
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
hardcover. Condizione: New. In shrink wrap. Looks like an interesting title!
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 242,75
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 253,65
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 243,92
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 273,32
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: California Books, Miami, FL, U.S.A.
EUR 286,49
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 276,28
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: moluna, Greven, Germania
EUR 266,02
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Lingua: Inglese
Editore: Springer US, Springer US Mär 2002, 2002
ISBN 10: 0792376889 ISBN 13: 9780792376880
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 267,49
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Neuware -Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De spite their apparent simplicity, lattices hide a rich combinatorial struc ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 234 pp. Englisch.
Condizione: New. pp. 236.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 277,49
Quantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De spite their apparent simplicity, lattices hide a rich combinatorial struc ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems.
Lingua: Inglese
Editore: Springer US, Springer US Mär 2002, 2002
ISBN 10: 0792376889 ISBN 13: 9780792376880
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 267,49
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Lattices are geometric objects that can be pictorially described as the set of intersection points of an infinite, regular n-dimensional grid. De spite their apparent simplicity, lattices hide a rich combinatorial struc ture, which has attracted the attention of great mathematicians over the last two centuries. Not surprisingly, lattices have found numerous ap plications in mathematics and computer science, ranging from number theory and Diophantine approximation, to combinatorial optimization and cryptography. The study of lattices, specifically from a computational point of view, was marked by two major breakthroughs: the development of the LLL lattice reduction algorithm by Lenstra, Lenstra and Lovasz in the early 80's, and Ajtai's discovery of a connection between the worst-case and average-case hardness of certain lattice problems in the late 90's. The LLL algorithm, despite the relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cryptosystems, and finding solutions to many other Diophantine and cryptanalysis problems. 234 pp. Englisch.
Da: preigu, Osnabrück, Germania
EUR 227,30
Quantità: 5 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Complexity of Lattice Problems | A Cryptographic Perspective | Daniele Micciancio (u. a.) | Buch | x | Englisch | 2002 | Springer | EAN 9780792376880 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Da: Majestic Books, Hounslow, Regno Unito
EUR 357,04
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 236 Illus. This item is printed on demand.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 367,92
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 236.