Search preferences
Vai alla pagina principale dei risultati di ricerca

Filtri di ricerca

Tipo di articolo

  • Tutti i tipi di prodotto 
  • Libri (11)
  • Riviste e Giornali (Nessun altro risultato corrispondente a questo perfezionamento)
  • Fumetti (Nessun altro risultato corrispondente a questo perfezionamento)
  • Spartiti (Nessun altro risultato corrispondente a questo perfezionamento)
  • Arte, Stampe e Poster (Nessun altro risultato corrispondente a questo perfezionamento)
  • Fotografie (Nessun altro risultato corrispondente a questo perfezionamento)
  • Mappe (Nessun altro risultato corrispondente a questo perfezionamento)
  • Manoscritti e Collezionismo cartaceo (Nessun altro risultato corrispondente a questo perfezionamento)

Condizioni Maggiori informazioni

  • Nuovo (10)
  • Come nuovo, Ottimo o Quasi ottimo (Nessun altro risultato corrispondente a questo perfezionamento)
  • Molto buono o Buono (1)
  • Discreto o Mediocre (Nessun altro risultato corrispondente a questo perfezionamento)
  • Come descritto (Nessun altro risultato corrispondente a questo perfezionamento)

Legatura

  • Tutte 
  • Rilegato (11)
  • Brossura (Nessun altro risultato corrispondente a questo perfezionamento)

Ulteriori caratteristiche

  • Prima ed. (Nessun altro risultato corrispondente a questo perfezionamento)
  • Copia autograf. (Nessun altro risultato corrispondente a questo perfezionamento)
  • Sovracoperta (Nessun altro risultato corrispondente a questo perfezionamento)
  • Con foto (5)
  • Non Print on Demand (6)

Lingua (1)

Prezzo

  • Qualsiasi prezzo 
  • Inferiore a EUR 20 (Nessun altro risultato corrispondente a questo perfezionamento)
  • EUR 20 a EUR 40 (Nessun altro risultato corrispondente a questo perfezionamento)
  • Superiore a EUR 40 
Fascia di prezzo personalizzata (EUR)

Paese del venditore

  • Kulikov, Gennady Yu; Kulikova, Maria V.

    Lingua: Inglese

    Editore: Springer, 2024

    ISBN 10: 3031613708 ISBN 13: 9783031613708

    Da: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 94,03

    Spedizione gratuita
    Spedito in U.S.A.

    Quantità: 1 disponibili

    Aggiungi al carrello

    Hardcover. Condizione: Very Good. No Jacket. Missing dust jacket; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less.

  • Gennady Yu. Kulikov

    Lingua: Inglese

    Editore: Springer International Publishing AG, Cham, 2024

    ISBN 10: 3031613708 ISBN 13: 9783031613708

    Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 153,14

    Spedizione gratuita
    Spedito in U.S.A.

    Quantità: 1 disponibili

    Aggiungi al carrello

    Hardcover. Condizione: new. Hardcover. This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-like filters rather than on statistical properties determining a model of the system state. Nevertheless, it provides the sound theoretical background and covers all contemporary state estimation techniques beginning at the celebrated Kalman filter, including its versions extended to nonlinear stochastic models, and till the most advanced universal Gaussian filters with deterministically sampled mean and covariance. In particular, the authors demonstrate that, when applying such filtering procedures to stochastic models with strong nonlinearities, the use of adaptive ordinary differential equation solvers with automatic local and global error control facilities allows the discretization errorand consequently the state estimation errorto be reduced considerably. For achieving that, the variable-stepsize methods with automatic error regulation and stepsize selection mechanisms are applied to treating moment differential equations arisen. The implemented discretization error reduction makes the self-adaptive nonlinear Gaussian filtering algorithms more suitable for application and leads to the novel notion of accurate state estimation. The book also discusses accurate state estimation in mathematical models with sparse measurements. Of special interest in this regard, it provides a means for treating stiff stochastic systems, which often encountered in applied science and engineering, being exemplified by the Van der Pol oscillator in electrical engineering and the Oregonator model of chemical kinetics. Square-root implementations of all Kalman-like filters considered and explored in this book for state estimation in Ill-conditioned continuousdiscrete stochastic systems attract the authors particular attention. This book covers both theoretical and applied aspects of numerical integration methods, including the concepts of approximation, convergence, stiffness as well as of local and global errors, suitably for applied scientists and engineers. Such methods serve as a basis for the development of accurate continuousdiscrete extended, unscented, cubature and many other Kalman filtering algorithms, including the universal Gaussian methods with deterministically sampled expectation and covariance as well as their mixed-type versions. The state estimation procedures in this book are presented in the fashion of complete pseudo-codes, which are ready for implementation and use in MATLAB or in any other computation platform. These are examined numerically and shown to outperform traditional variants of the Kalman-like filters in practical prediction/filtering tasks, including state estimations of stiff and/or ill-conditioned continuousdiscrete nonlinear stochastic systems. This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • EUR 166,59

    Spedizione EUR 3,35
    Spedito in U.S.A.

    Quantità: 4 disponibili

    Aggiungi al carrello

    Condizione: New. 2024th edition NO-PA16APR2015-KAP.

  • Maria V. Kulikova

    Lingua: Inglese

    Editore: Springer International Publishing, Springer Nature Switzerland Sep 2024, 2024

    ISBN 10: 3031613708 ISBN 13: 9783031613708

    Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 123,04

    Spedizione EUR 60,00
    Spedito da Germania a U.S.A.

    Quantità: 2 disponibili

    Aggiungi al carrello

    Buch. Condizione: Neu. Neuware -This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-like filters rather than on statistical properties determining a model of the system state. Nevertheless, it provides the sound theoretical background and covers all contemporary state estimation techniques beginning at the celebrated Kalman filter, including its versions extended to nonlinear stochastic models, and till the most advanced universal Gaussian filters with deterministically sampled mean and covariance. In particular, the authors demonstrate that, when applying such filtering procedures to stochastic models with strong nonlinearities, the use of adaptive ordinary differential equation solvers with automatic local and global error control facilities allows the discretization error¿and consequently the state estimation error¿to be reduced considerably. For achieving that, the variable-stepsize methods with automatic error regulation and stepsize selection mechanisms are applied to treating moment differential equations arisen. The implemented discretization error reduction makes the self-adaptive nonlinear Gaussian filtering algorithms more suitable for application and leads to the novel notion of accurate state estimation.The book also discusses accurate state estimation in mathematical models with sparse measurements. Of special interest in this regard, it provides a means for treating stiff stochastic systems, which often encountered in applied science and engineering, being exemplified by the Van der Pol oscillator in electrical engineering and the Oregonator model of chemical kinetics. Square-root implementations of all Kalman-like filters considered and explored in this book for state estimation in Ill-conditioned continuous¿discrete stochastic systems attract the authors¿ particular attention.This book covers both theoretical and applied aspects of numerical integration methods, including the concepts of approximation, convergence, stiffness as well as of local and global errors, suitably for applied scientists and engineers. Such methods serve as a basis for the development of accurate continuous¿discrete extended, unscented, cubature and many other Kalman filtering algorithms, including the universal Gaussian methods with deterministically sampled expectation and covariance as well as their mixed-type versions. The state estimation procedures in this book are presented in the fashion of complete pseudo-codes, which are ready for implementation and use in MATLAB® or in any other computation platform. These are examined numerically and shown to outperform traditional variants of the Kalman-like filters in practical prediction/filtering tasks, including state estimations of stiff and/or ill-conditioned continuous¿discrete nonlinear stochastic systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 820 pp. Englisch.

  • Maria V. Kulikova

    Lingua: Inglese

    Editore: Springer International Publishing, Springer Nature Switzerland, 2024

    ISBN 10: 3031613708 ISBN 13: 9783031613708

    Da: AHA-BUCH GmbH, Einbeck, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 123,04

    Spedizione EUR 66,90
    Spedito da Germania a U.S.A.

    Quantità: 1 disponibili

    Aggiungi al carrello

    Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-like filters rather than on statistical properties determining a model of the system state. Nevertheless, it provides the sound theoretical background and covers all contemporary state estimation techniques beginning at the celebrated Kalman filter, including its versions extended to nonlinear stochastic models, and till the most advanced universal Gaussian filters with deterministically sampled mean and covariance. In particular, the authors demonstrate that, when applying such filtering procedures to stochastic models with strong nonlinearities, the use of adaptive ordinary differential equation solvers with automatic local and global error control facilities allows the discretization error-and consequently the state estimation error-to be reduced considerably. For achieving that, the variable-stepsize methods with automatic error regulation and stepsize selection mechanisms are applied to treating moment differential equations arisen. The implemented discretization error reduction makes the self-adaptive nonlinear Gaussian filtering algorithms more suitable for application and leads to the novel notion of accurate state estimation.The book also discusses accurate state estimation in mathematical models with sparse measurements. Of special interest in this regard, it provides a means for treating stiff stochastic systems, which often encountered in applied science and engineering, being exemplified by the Van der Pol oscillator in electrical engineering and the Oregonator model of chemical kinetics. Square-root implementations of all Kalman-like filters considered and explored in this book for state estimation in Ill-conditioned continuous-discrete stochastic systems attract the authors' particular attention.This book covers both theoretical and applied aspects of numerical integration methods, including the concepts of approximation, convergence, stiffness as well as of local and global errors, suitably for applied scientists and engineers. Such methods serve as a basis for the development of accurate continuous-discrete extended, unscented, cubature and many other Kalman filtering algorithms, including the universal Gaussian methods with deterministically sampled expectation and covariance as well as their mixed-type versions. The state estimation procedures in this book are presented in the fashion of complete pseudo-codes, which are ready for implementation and use in MATLAB® or in any other computation platform. These are examined numerically and shown to outperform traditional variants of the Kalman-like filters in practical prediction/filtering tasks, including state estimations of stiff and/or ill-conditioned continuous-discrete nonlinear stochastic systems.

  • Kulikov, Gennady Yu./ Kulikova, Maria V.

    Lingua: Inglese

    Editore: Springer Nature, 2024

    ISBN 10: 3031613708 ISBN 13: 9783031613708

    Da: Revaluation Books, Exeter, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 184,84

    Spedizione EUR 17,24
    Spedito da Regno Unito a U.S.A.

    Quantità: 1 disponibili

    Aggiungi al carrello

    Hardcover. Condizione: Brand New. 700 pages. 9.25x6.10x9.49 inches. In Stock.

  • Maria V. Kulikova

    Lingua: Inglese

    Editore: Springer International Publishing, Springer International Publishing Sep 2024, 2024

    ISBN 10: 3031613708 ISBN 13: 9783031613708

    Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    Print on Demand

    EUR 123,04

    Spedizione EUR 23,00
    Spedito da Germania a U.S.A.

    Quantità: 2 disponibili

    Aggiungi al carrello

    Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-like filters rather than on statistical properties determining a model of the system state. Nevertheless, it provides the sound theoretical background and covers all contemporary state estimation techniques beginning at the celebrated Kalman filter, including its versions extended to nonlinear stochastic models, and till the most advanced universal Gaussian filters with deterministically sampled mean and covariance. In particular, the authors demonstrate that, when applying such filtering procedures to stochastic models with strong nonlinearities, the use of adaptive ordinary differential equation solvers with automatic local and global error control facilities allows the discretization error-and consequently the state estimation error-to be reduced considerably. For achieving that, the variable-stepsize methods with automatic error regulation and stepsize selection mechanisms are applied to treating moment differential equations arisen. The implemented discretization error reduction makes the self-adaptive nonlinear Gaussian filtering algorithms more suitable for application and leads to the novel notion of accurate state estimation.The book also discusses accurate state estimation in mathematical models with sparse measurements. Of special interest in this regard, it provides a means for treating stiff stochastic systems, which often encountered in applied science and engineering, being exemplified by the Van der Pol oscillator in electrical engineering and the Oregonator model of chemical kinetics. Square-root implementations of all Kalman-like filters considered and explored in this book for state estimation in Ill-conditioned continuous-discrete stochastic systems attract the authors' particular attention.This book covers both theoretical and applied aspects of numerical integration methods, including the concepts of approximation, convergence, stiffness as well as of local and global errors, suitably for applied scientists and engineers. Such methods serve as a basis for the development of accurate continuous-discrete extended, unscented, cubature and many other Kalman filtering algorithms, including the universal Gaussian methods with deterministically sampled expectation and covariance as well as their mixed-type versions. The state estimation procedures in this book are presented in the fashion of complete pseudo-codes, which are ready for implementation and use in MATLAB® or in any other computation platform. These are examined numerically and shown to outperform traditional variants of the Kalman-like filters in practical prediction/filtering tasks, including state estimations of stiff and/or ill-conditioned continuous-discrete nonlinear stochastic systems. 820 pp. Englisch.

  • Kulikov, Gennady Yu.|Kulikova, Maria V.

    Lingua: Inglese

    Editore: Springer, Berlin|Springer International Publishing|Springer, 2024

    ISBN 10: 3031613708 ISBN 13: 9783031613708

    Da: moluna, Greven, Germania

    Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    Print on Demand

    EUR 105,45

    Spedizione EUR 48,99
    Spedito da Germania a U.S.A.

    Quantità: Più di 20 disponibili

    Aggiungi al carrello

    Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-l.

  • EUR 170,34

    Spedizione EUR 7,47
    Spedito da Regno Unito a U.S.A.

    Quantità: 4 disponibili

    Aggiungi al carrello

    Condizione: New. Print on Demand.

  • Gennady Yu. Kulikov (u. a.)

    Lingua: Inglese

    Editore: Springer, 2024

    ISBN 10: 3031613708 ISBN 13: 9783031613708

    Da: preigu, Osnabrück, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    Print on Demand

    EUR 109,35

    Spedizione EUR 70,00
    Spedito da Germania a U.S.A.

    Quantità: 5 disponibili

    Aggiungi al carrello

    Buch. Condizione: Neu. State Estimation for Nonlinear Continuous-Discrete Stochastic Systems | Numerical Aspects and Implementation Issues | Gennady Yu. Kulikov (u. a.) | Buch | xxi | Englisch | 2024 | Springer | EAN 9783031613708 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.

  • EUR 178,74

    Spedizione EUR 9,95
    Spedito da Germania a U.S.A.

    Quantità: 4 disponibili

    Aggiungi al carrello

    Condizione: New. PRINT ON DEMAND.