Hardcover. Condizione: Very Good. No Jacket. Missing dust jacket; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less.
Lingua: Inglese
Editore: Springer International Publishing AG, Cham, 2024
ISBN 10: 3031613708 ISBN 13: 9783031613708
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condizione: new. Hardcover. This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-like filters rather than on statistical properties determining a model of the system state. Nevertheless, it provides the sound theoretical background and covers all contemporary state estimation techniques beginning at the celebrated Kalman filter, including its versions extended to nonlinear stochastic models, and till the most advanced universal Gaussian filters with deterministically sampled mean and covariance. In particular, the authors demonstrate that, when applying such filtering procedures to stochastic models with strong nonlinearities, the use of adaptive ordinary differential equation solvers with automatic local and global error control facilities allows the discretization errorand consequently the state estimation errorto be reduced considerably. For achieving that, the variable-stepsize methods with automatic error regulation and stepsize selection mechanisms are applied to treating moment differential equations arisen. The implemented discretization error reduction makes the self-adaptive nonlinear Gaussian filtering algorithms more suitable for application and leads to the novel notion of accurate state estimation. The book also discusses accurate state estimation in mathematical models with sparse measurements. Of special interest in this regard, it provides a means for treating stiff stochastic systems, which often encountered in applied science and engineering, being exemplified by the Van der Pol oscillator in electrical engineering and the Oregonator model of chemical kinetics. Square-root implementations of all Kalman-like filters considered and explored in this book for state estimation in Ill-conditioned continuousdiscrete stochastic systems attract the authors particular attention. This book covers both theoretical and applied aspects of numerical integration methods, including the concepts of approximation, convergence, stiffness as well as of local and global errors, suitably for applied scientists and engineers. Such methods serve as a basis for the development of accurate continuousdiscrete extended, unscented, cubature and many other Kalman filtering algorithms, including the universal Gaussian methods with deterministically sampled expectation and covariance as well as their mixed-type versions. The state estimation procedures in this book are presented in the fashion of complete pseudo-codes, which are ready for implementation and use in MATLAB or in any other computation platform. These are examined numerically and shown to outperform traditional variants of the Kalman-like filters in practical prediction/filtering tasks, including state estimations of stiff and/or ill-conditioned continuousdiscrete nonlinear stochastic systems. This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Condizione: New. 2024th edition NO-PA16APR2015-KAP.
Lingua: Inglese
Editore: Springer International Publishing, Springer Nature Switzerland Sep 2024, 2024
ISBN 10: 3031613708 ISBN 13: 9783031613708
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 123,04
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Neuware -This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-like filters rather than on statistical properties determining a model of the system state. Nevertheless, it provides the sound theoretical background and covers all contemporary state estimation techniques beginning at the celebrated Kalman filter, including its versions extended to nonlinear stochastic models, and till the most advanced universal Gaussian filters with deterministically sampled mean and covariance. In particular, the authors demonstrate that, when applying such filtering procedures to stochastic models with strong nonlinearities, the use of adaptive ordinary differential equation solvers with automatic local and global error control facilities allows the discretization error¿and consequently the state estimation error¿to be reduced considerably. For achieving that, the variable-stepsize methods with automatic error regulation and stepsize selection mechanisms are applied to treating moment differential equations arisen. The implemented discretization error reduction makes the self-adaptive nonlinear Gaussian filtering algorithms more suitable for application and leads to the novel notion of accurate state estimation.The book also discusses accurate state estimation in mathematical models with sparse measurements. Of special interest in this regard, it provides a means for treating stiff stochastic systems, which often encountered in applied science and engineering, being exemplified by the Van der Pol oscillator in electrical engineering and the Oregonator model of chemical kinetics. Square-root implementations of all Kalman-like filters considered and explored in this book for state estimation in Ill-conditioned continuous¿discrete stochastic systems attract the authors¿ particular attention.This book covers both theoretical and applied aspects of numerical integration methods, including the concepts of approximation, convergence, stiffness as well as of local and global errors, suitably for applied scientists and engineers. Such methods serve as a basis for the development of accurate continuous¿discrete extended, unscented, cubature and many other Kalman filtering algorithms, including the universal Gaussian methods with deterministically sampled expectation and covariance as well as their mixed-type versions. The state estimation procedures in this book are presented in the fashion of complete pseudo-codes, which are ready for implementation and use in MATLAB® or in any other computation platform. These are examined numerically and shown to outperform traditional variants of the Kalman-like filters in practical prediction/filtering tasks, including state estimations of stiff and/or ill-conditioned continuous¿discrete nonlinear stochastic systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 820 pp. Englisch.
Lingua: Inglese
Editore: Springer International Publishing, Springer Nature Switzerland, 2024
ISBN 10: 3031613708 ISBN 13: 9783031613708
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 123,04
Quantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-like filters rather than on statistical properties determining a model of the system state. Nevertheless, it provides the sound theoretical background and covers all contemporary state estimation techniques beginning at the celebrated Kalman filter, including its versions extended to nonlinear stochastic models, and till the most advanced universal Gaussian filters with deterministically sampled mean and covariance. In particular, the authors demonstrate that, when applying such filtering procedures to stochastic models with strong nonlinearities, the use of adaptive ordinary differential equation solvers with automatic local and global error control facilities allows the discretization error-and consequently the state estimation error-to be reduced considerably. For achieving that, the variable-stepsize methods with automatic error regulation and stepsize selection mechanisms are applied to treating moment differential equations arisen. The implemented discretization error reduction makes the self-adaptive nonlinear Gaussian filtering algorithms more suitable for application and leads to the novel notion of accurate state estimation.The book also discusses accurate state estimation in mathematical models with sparse measurements. Of special interest in this regard, it provides a means for treating stiff stochastic systems, which often encountered in applied science and engineering, being exemplified by the Van der Pol oscillator in electrical engineering and the Oregonator model of chemical kinetics. Square-root implementations of all Kalman-like filters considered and explored in this book for state estimation in Ill-conditioned continuous-discrete stochastic systems attract the authors' particular attention.This book covers both theoretical and applied aspects of numerical integration methods, including the concepts of approximation, convergence, stiffness as well as of local and global errors, suitably for applied scientists and engineers. Such methods serve as a basis for the development of accurate continuous-discrete extended, unscented, cubature and many other Kalman filtering algorithms, including the universal Gaussian methods with deterministically sampled expectation and covariance as well as their mixed-type versions. The state estimation procedures in this book are presented in the fashion of complete pseudo-codes, which are ready for implementation and use in MATLAB® or in any other computation platform. These are examined numerically and shown to outperform traditional variants of the Kalman-like filters in practical prediction/filtering tasks, including state estimations of stiff and/or ill-conditioned continuous-discrete nonlinear stochastic systems.
Da: Revaluation Books, Exeter, Regno Unito
EUR 184,84
Quantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Brand New. 700 pages. 9.25x6.10x9.49 inches. In Stock.
Lingua: Inglese
Editore: Springer International Publishing, Springer International Publishing Sep 2024, 2024
ISBN 10: 3031613708 ISBN 13: 9783031613708
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 123,04
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-like filters rather than on statistical properties determining a model of the system state. Nevertheless, it provides the sound theoretical background and covers all contemporary state estimation techniques beginning at the celebrated Kalman filter, including its versions extended to nonlinear stochastic models, and till the most advanced universal Gaussian filters with deterministically sampled mean and covariance. In particular, the authors demonstrate that, when applying such filtering procedures to stochastic models with strong nonlinearities, the use of adaptive ordinary differential equation solvers with automatic local and global error control facilities allows the discretization error-and consequently the state estimation error-to be reduced considerably. For achieving that, the variable-stepsize methods with automatic error regulation and stepsize selection mechanisms are applied to treating moment differential equations arisen. The implemented discretization error reduction makes the self-adaptive nonlinear Gaussian filtering algorithms more suitable for application and leads to the novel notion of accurate state estimation.The book also discusses accurate state estimation in mathematical models with sparse measurements. Of special interest in this regard, it provides a means for treating stiff stochastic systems, which often encountered in applied science and engineering, being exemplified by the Van der Pol oscillator in electrical engineering and the Oregonator model of chemical kinetics. Square-root implementations of all Kalman-like filters considered and explored in this book for state estimation in Ill-conditioned continuous-discrete stochastic systems attract the authors' particular attention.This book covers both theoretical and applied aspects of numerical integration methods, including the concepts of approximation, convergence, stiffness as well as of local and global errors, suitably for applied scientists and engineers. Such methods serve as a basis for the development of accurate continuous-discrete extended, unscented, cubature and many other Kalman filtering algorithms, including the universal Gaussian methods with deterministically sampled expectation and covariance as well as their mixed-type versions. The state estimation procedures in this book are presented in the fashion of complete pseudo-codes, which are ready for implementation and use in MATLAB® or in any other computation platform. These are examined numerically and shown to outperform traditional variants of the Kalman-like filters in practical prediction/filtering tasks, including state estimations of stiff and/or ill-conditioned continuous-discrete nonlinear stochastic systems. 820 pp. Englisch.
Lingua: Inglese
Editore: Springer, Berlin|Springer International Publishing|Springer, 2024
ISBN 10: 3031613708 ISBN 13: 9783031613708
Da: moluna, Greven, Germania
EUR 105,45
Quantità: Più di 20 disponibili
Aggiungi al carrelloGebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book addresses the problem of accurate state estimation in nonlinear continuous-time stochastic models with additive noise and discrete measurements. Its main focus is on numerical aspects of computation of the expectation and covariance in Kalman-l.
Da: Majestic Books, Hounslow, Regno Unito
EUR 170,34
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Da: preigu, Osnabrück, Germania
EUR 109,35
Quantità: 5 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. State Estimation for Nonlinear Continuous-Discrete Stochastic Systems | Numerical Aspects and Implementation Issues | Gennady Yu. Kulikov (u. a.) | Buch | xxi | Englisch | 2024 | Springer | EAN 9783031613708 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 178,74
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.