Condizione: New.
Lingua: Inglese
Editore: Bpb Publications 3/21/2025, 2025
ISBN 10: 9365897246 ISBN 13: 9789365897241
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Mastering Retrieval-Augmented Generation: Building next-gen GenAI apps with LangChain, LlamaIndex, and LLMs (English Edition). Book.
EUR 47,76
Quantità: Più di 20 disponibili
Aggiungi al carrelloUNK. Condizione: New. New Book. Shipped from UK. Established seller since 2000.
EUR 42,71
Quantità: Più di 20 disponibili
Aggiungi al carrelloUNK. Condizione: New. New Book. Shipped from UK. Established seller since 2000.
EUR 50,59
Quantità: Più di 20 disponibili
Aggiungi al carrelloMixed Media Product. Condizione: New.
EUR 53,28
Quantità: Più di 20 disponibili
Aggiungi al carrelloMixed Media Product. Condizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 41,61
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
EUR 54,57
Quantità: Più di 20 disponibili
Aggiungi al carrelloMixed Media Product. Condizione: New.
EUR 46,22
Quantità: Più di 20 disponibili
Aggiungi al carrelloMixed Media Product. Condizione: New.
Da: Majestic Books, Hounslow, Regno Unito
EUR 16,96
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 18,06
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
EUR 40,98
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 45,21
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
ISBN 10: 9365897246 ISBN 13: 9789365897241
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 41,60
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
ISBN 10: 9365897246 ISBN 13: 9789365897241
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 46,68
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Lingua: Inglese
Editore: BPB Publications, New Delhi, 2025
ISBN 10: 9365897246 ISBN 13: 9789365897241
Da: CitiRetail, Stevenage, Regno Unito
EUR 47,72
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. DESCRIPTIONLarge language models (LLMs) like GPT, BERT, and T5 are revolutionizing how we interact with technology - powering virtual assistants, content generation, and data analysis. As their influence grows, understanding their architecture, capabilities, and ethical considerations is more important than ever. This book breaks down the essentials of LLMs and explores retrieval-augmented generation (RAG), a powerful approach that combines retrieval systems with generative AI for smarter, faster, and more reliable results.It provides a step-by-step approach to building advanced intelligent systems that utilize an innovative technique known as the RAG thus making them factually correct, context-aware, and sustainable. You will start with foundational knowledge - understanding architectures, training processes, and ethical considerations - before diving into the mechanics of RAG, learning how retrievers and generators collaborate to improve performance. The book introduces essential frameworks like LangChain and LlamaIndex, walking you through practical implementations, troubleshooting, and optimization techniques. It explores advanced optimization techniques, and offers hands-on coding exercises to ensure practical understanding. Real-world case studies and industry applications help bridge the gap between theory and implementation. By the final chapter, you will have the skills to design, build, and optimize RAG-powered applications - integrating LLMs with retrieval systems, creating custom pipelines, and scaling for performance. WHAT YOU WILL LEARN Understand the fundamentals of LLMs. Explore RAG and its key components. Build GenAI applications using LangChain and LlamaIndex frameworks. Optimize retrieval strategies for accurate and grounded AI responses. Deploy scalable, production-ready RAG pipelines with best practices. Troubleshoot and fine-tune RAG pipelines for optimal performance.WHO THIS BOOK IS FORThis book is for AI practitioners, data scientists, students, and developers looking to implement RAG using LangChain and LlamaIndex. Readers having basic knowledge of Python, ML concepts, and NLP fundamentals would be able to leverage the knowledge gained to accelerate their careers. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Da: preigu, Osnabrück, Germania
EUR 53,45
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Mastering Retrieval-Augmented Generation | Building next-gen GenAI apps with LangChain, LlamaIndex, and LLMs (English Edition) | Prashanth Josyula (u. a.) | Taschenbuch | Englisch | 2025 | BPB Publications | EAN 9789365897241 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 62,85
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - DESCRIPTIONLarge language models (LLMs) like GPT, BERT, and T5 are revolutionizing how we interact with technology - powering virtual assistants, content generation, and data analysis. As their influence grows, understanding their architecture, capabilities, and ethical considerations is more important than ever. This book breaks down the essentials of LLMs and explores retrieval-augmented generation (RAG), a powerful approach that combines retrieval systems with generative AI for smarter, faster, and more reliable results.It provides a step-by-step approach to building advanced intelligent systems that utilize an innovative technique known as the RAG thus making them factually correct, context-aware, and sustainable. You will start with foundational knowledge - understanding architectures, training processes, and ethical considerations - before diving into the mechanics of RAG, learning how retrievers and generators collaborate to improve performance. The book introduces essential frameworks like LangChain and LlamaIndex, walking you through practical implementations, troubleshooting, and optimization techniques. It explores advanced optimization techniques, and offers hands-on coding exercises to ensure practical understanding. Real-world case studies and industry applications help bridge the gap between theory and implementation.By the final chapter, you will have the skills to design, build, and optimize RAG-powered applications - integrating LLMs with retrieval systems, creating custom pipelines, and scaling for performance.WHAT YOU WILL LEARN¿ Understand the fundamentals of LLMs.¿ Explore RAG and its key components.¿ Build GenAI applications using LangChain and LlamaIndex frameworks.¿ Optimize retrieval strategies for accurate and grounded AI responses.¿ Deploy scalable, production-ready RAG pipelines with best practices.¿ Troubleshoot and fine-tune RAG pipelines for optimal performance.WHO THIS BOOK IS FORThis book is for AI practitioners, data scientists, students, and developers looking to implement RAG using LangChain and LlamaIndex. Readers having basic knowledge of Python, ML concepts, and NLP fundamentals would be able to leverage the knowledge gained to accelerate their careers.