Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 52,06
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Best Price, Torrance, CA, U.S.A.
EUR 48,40
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Da: California Books, Miami, FL, U.S.A.
EUR 65,13
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Vieweg Verlag, Friedr, & Sohn Verlagsgesellschaft mbH, 1991
ISBN 10: 3528076321 ISBN 13: 9783528076320
Lingua: Inglese
Da: Books Puddle, New York, NY, U.S.A.
EUR 75,56
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. pp. 184.
EUR 48,37
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Revaluation Books, Exeter, Regno Unito
EUR 76,23
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. reprint edition. 184 pages. 9.25x6.10x0.47 inches. In Stock.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 103,90
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 53,49
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph is the result of my PhD thesis work in Computational Fluid Dynamics at the Massachusettes Institute of Technology under the supervision of Professor Earll Murman. A new finite element al gorithm is presented for solving the steady Euler equations describing the flow of an inviscid, compressible, ideal gas. This algorithm uses a finite element spatial discretization coupled with a Runge-Kutta time integration to relax to steady state. It is shown that other algorithms, such as finite difference and finite volume methods, can be derived using finite element principles. A higher-order biquadratic approximation is introduced. Several test problems are computed to verify the algorithms. Adaptive gridding in two and three dimensions using quadrilateral and hexahedral elements is developed and verified. Adaptation is shown to provide CPU savings of a factor of 2 to 16, and biquadratic elements are shown to provide potential savings of a factor of 2 to 6. An analysis of the dispersive properties of several discretization methods for the Euler equations is presented, and results allowing the prediction of dispersive errors are obtained. The adaptive algorithm is applied to the solution of several flows in scramjet inlets in two and three dimensions, demonstrat ing some of the varied physics associated with these flows. Some issues in the design and implementation of adaptive finite element algorithms on vector and parallel computers are discussed.
Editore: Vieweg+Teubner Verlag 1991-01-01, 1991
ISBN 10: 3528076321 ISBN 13: 9783528076320
Lingua: Inglese
Da: Chiron Media, Wallingford, Regno Unito
EUR 100,34
Convertire valutaQuantità: 10 disponibili
Aggiungi al carrelloPaperback. Condizione: New.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 101,25
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Like New. Like New. book.
Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Editore: Vieweg Verlag, Friedr, & Sohn Verlagsgesellschaft mbH, 1991
ISBN 10: 3528076321 ISBN 13: 9783528076320
Lingua: Inglese
Da: Majestic Books, Hounslow, Regno Unito
EUR 76,63
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 184 Illus.
Editore: Vieweg Verlag, Friedr, & Sohn Verlagsgesellschaft mbH, 1991
ISBN 10: 3528076321 ISBN 13: 9783528076320
Lingua: Inglese
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 79,37
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 184.
Editore: Vieweg+Teubner, Vieweg+Teubner Verlag Jan 1991, 1991
ISBN 10: 3528076321 ISBN 13: 9783528076320
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 85,55
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph is the result of my PhD thesis work in Computational Fluid Dynamics at the Massachusettes Institute of Technology under the supervision of Professor Earll Murman. A new finite element al gorithm is presented for solving the steady Euler equations describing the flow of an inviscid, compressible, ideal gas. This algorithm uses a finite element spatial discretization coupled with a Runge-Kutta time integration to relax to steady state. It is shown that other algorithms, such as finite difference and finite volume methods, can be derived using finite element principles. A higher-order biquadratic approximation is introduced. Several test problems are computed to verify the algorithms. Adaptive gridding in two and three dimensions using quadrilateral and hexahedral elements is developed and verified. Adaptation is shown to provide CPU savings of a factor of 2 to 16, and biquadratic elements are shown to provide potential savings of a factor of 2 to 6. An analysis of the dispersive properties of several discretization methods for the Euler equations is presented, and results allowing the prediction of dispersive errors are obtained. The adaptive algorithm is applied to the solution of several flows in scramjet inlets in two and three dimensions, demonstrat ing some of the varied physics associated with these flows. Some issues in the design and implementation of adaptive finite element algorithms on vector and parallel computers are discussed. 166 pp. Englisch.
Editore: Vieweg+Teubner Verlag, Vieweg+Teubner Verlag Jan 1991, 1991
ISBN 10: 3528076321 ISBN 13: 9783528076320
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 53,49
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This monograph is the result of my PhD thesis work in Computational Fluid Dynamics at the Massachusettes Institute of Technology under the supervision of Professor Earll Murman. A new finite element al gorithm is presented for solving the steady Euler equations describing the flow of an inviscid, compressible, ideal gas. This algorithm uses a finite element spatial discretization coupled with a Runge-Kutta time integration to relax to steady state. It is shown that other algorithms, such as finite difference and finite volume methods, can be derived using finite element principles. A higher-order biquadratic approximation is introduced. Several test problems are computed to verify the algorithms. Adaptive gridding in two and three dimensions using quadrilateral and hexahedral elements is developed and verified. Adaptation is shown to provide CPU savings of a factor of 2 to 16, and biquadratic elements are shown to provide potential savings of a factor of 2 to 6. An analysis of the dispersive properties of several discretization methods for the Euler equations is presented, and results allowing the prediction of dispersive errors are obtained. The adaptive algorithm is applied to the solution of several flows in scramjet inlets in two and three dimensions, demonstrat ing some of the varied physics associated with these flows. Some issues in the design and implementation of adaptive finite element algorithms on vector and parallel computers are discussed.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 184 pp. Englisch.