Search preferences
Vai alla pagina principale dei risultati di ricerca

Filtri di ricerca

Tipo di articolo

  • Tutti i tipi di prodotto 
  • Libri (5)
  • Riviste e Giornali (Nessun altro risultato corrispondente a questo perfezionamento)
  • Fumetti (Nessun altro risultato corrispondente a questo perfezionamento)
  • Spartiti (Nessun altro risultato corrispondente a questo perfezionamento)
  • Arte, Stampe e Poster (Nessun altro risultato corrispondente a questo perfezionamento)
  • Fotografie (Nessun altro risultato corrispondente a questo perfezionamento)
  • Mappe (Nessun altro risultato corrispondente a questo perfezionamento)
  • Manoscritti e Collezionismo cartaceo (Nessun altro risultato corrispondente a questo perfezionamento)

Condizioni

  • Tutte 
  • Nuovi (5)
  • Antichi o usati (Nessun altro risultato corrispondente a questo perfezionamento)

Legatura

  • Tutte 
  • Rilegato (Nessun altro risultato corrispondente a questo perfezionamento)
  • Brossura (5)

Ulteriori caratteristiche

  • Prima ed. (Nessun altro risultato corrispondente a questo perfezionamento)
  • Copia autograf. (Nessun altro risultato corrispondente a questo perfezionamento)
  • Sovracoperta (Nessun altro risultato corrispondente a questo perfezionamento)
  • Con foto (Nessun altro risultato corrispondente a questo perfezionamento)
  • Non Print on Demand (4)

Lingua (1)

Prezzo

Fascia di prezzo personalizzata (EUR)

Spedizione gratuita

  • Spedizione gratuita in Italia (Nessun altro risultato corrispondente a questo perfezionamento)

Paese del venditore

  • Flux, Jamie

    Editore: Independently published, 2024

    ISBN 13: 9798300997649

    Lingua: Inglese

    Da: Ria Christie Collections, Uxbridge, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 10,51 per la spedizione da Regno Unito a Italia

    Destinazione, tempi e costi

    Quantità: Più di 20 disponibili

    Aggiungi al carrello

    Condizione: New. In.

  • Flux, Jamie

    Editore: Amazon Digital Services LLC - Kdp, 2024

    ISBN 13: 9798300997649

    Lingua: Inglese

    Da: AHA-BUCH GmbH, Einbeck, Germania

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 14,99 per la spedizione da Germania a Italia

    Destinazione, tempi e costi

    Quantità: 2 disponibili

    Aggiungi al carrello

    Taschenbuch. Condizione: Neu. Neuware - Unlock the future of signal processing with this comprehensive volume that delves deep into advanced algorithms for multi-dimensional data analysis. This book serves as an indispensable resource for researchers, engineers, and advanced practitioners seeking to harness cutting-edge computational techniques in signal processing.

  • Jamie Flux

    Editore: Independently Published, 2024

    ISBN 13: 9798300997649

    Lingua: Inglese

    Da: CitiRetail, Stevenage, Regno Unito

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 35,07 per la spedizione da Regno Unito a Italia

    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Paperback. Condizione: new. Paperback. Unlock the future of signal processing with this comprehensive volume that delves deep into advanced algorithms for multi-dimensional data analysis. This book serves as an indispensable resource for researchers, engineers, and advanced practitioners seeking to harness cutting-edge computational techniques in signal processing. Spanning 99 meticulously crafted chapters, it explores an extensive array of sophisticated algorithms and theoretical frameworks that push the boundaries of current knowledge. Each chapter presents a deep dive into a specific algorithm, offering innovative ideas, original theories, and insights into the latest research breakthroughs. Highlights Include: Optimized Multi-dimensional Discrete Fourier Transform: Discover advanced optimization techniques for implementing the multi-dimensional DFT on large-scale datasets. Learn about novel approaches that reduce computational complexity by exploiting symmetries and utilizing sparse representations. Accelerated Multi-dimensional Fast Fourier Transform Algorithms: Explore cutting-edge methods that build upon the foundational Cooley-Tukey algorithm. Understand how to partition data domains into optimized sub-regions, enabling parallel processing without sacrificing accuracy. Sparse Representation and Compressed Sensing in Multi-dimensional Signals: Delve into groundbreaking algorithms that leverage tensor decomposition methods for ultra-sparse representations. Applications discussed include medical imaging reconstruction and remote sensing data analysis. Graph Signal Processing on Multi-dimensional Data Structures: Examine novel algorithms at the intersection of graph theory and signal processing. Learn how to generalize traditional concepts to graph domains, facilitating analysis of complex structures like social networks and biological systems. Deep Learning Architectures for Multi-dimensional Signal Processing: Gain insights into the latest deep learning models, such as multi-dimensional convolutional neural networks and recurrent neural networks adapted for spatial-temporal data. Topological Data Analysis in Multi-dimensional Signal Processing: Explore the application of algebraic topology concepts, like persistent homology, to extract shape-based features from complex data sets, enhancing capabilities in data mining and material science. Advanced Kalman Filter Techniques in Multi-dimensional Spaces: Learn about sophisticated algorithms extending the standard Kalman filter to high-dimensional state spaces, with innovations in adaptive covariance estimation and nonlinear state models. Multi-dimensional Empirical Mode Decomposition Algorithms: Understand how to generalize EMD to higher dimensions, enabling decomposition of complex signals into intrinsic mode functions for applications in image processing and environmental monitoring. Hybrid Time-Frequency Analysis in Multi-dimensional Signal Processing: Discover how to combine the strengths of various transforms within a unified framework, allowing simultaneous analysis of localized and global features in complex applications like seismic data interpretation. Nonlinear Multi-dimensional Signal Processing with Kernel Methods: Investigate algorithms that map high-dimensional signals into reproducing kernel Hilbert spaces, enabling nonlinear operations with linear complexity. Applications in pattern recognition and data compression are discussed. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • Jamie Flux

    Editore: Independently Published, 2024

    ISBN 13: 9798300997649

    Lingua: Inglese

    Da: Grand Eagle Retail, Fairfield, OH, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    EUR 65,35 per la spedizione da U.S.A. a Italia

    Destinazione, tempi e costi

    Quantità: 1 disponibili

    Aggiungi al carrello

    Paperback. Condizione: new. Paperback. Unlock the future of signal processing with this comprehensive volume that delves deep into advanced algorithms for multi-dimensional data analysis. This book serves as an indispensable resource for researchers, engineers, and advanced practitioners seeking to harness cutting-edge computational techniques in signal processing. Spanning 99 meticulously crafted chapters, it explores an extensive array of sophisticated algorithms and theoretical frameworks that push the boundaries of current knowledge. Each chapter presents a deep dive into a specific algorithm, offering innovative ideas, original theories, and insights into the latest research breakthroughs. Highlights Include: Optimized Multi-dimensional Discrete Fourier Transform: Discover advanced optimization techniques for implementing the multi-dimensional DFT on large-scale datasets. Learn about novel approaches that reduce computational complexity by exploiting symmetries and utilizing sparse representations. Accelerated Multi-dimensional Fast Fourier Transform Algorithms: Explore cutting-edge methods that build upon the foundational Cooley-Tukey algorithm. Understand how to partition data domains into optimized sub-regions, enabling parallel processing without sacrificing accuracy. Sparse Representation and Compressed Sensing in Multi-dimensional Signals: Delve into groundbreaking algorithms that leverage tensor decomposition methods for ultra-sparse representations. Applications discussed include medical imaging reconstruction and remote sensing data analysis. Graph Signal Processing on Multi-dimensional Data Structures: Examine novel algorithms at the intersection of graph theory and signal processing. Learn how to generalize traditional concepts to graph domains, facilitating analysis of complex structures like social networks and biological systems. Deep Learning Architectures for Multi-dimensional Signal Processing: Gain insights into the latest deep learning models, such as multi-dimensional convolutional neural networks and recurrent neural networks adapted for spatial-temporal data. Topological Data Analysis in Multi-dimensional Signal Processing: Explore the application of algebraic topology concepts, like persistent homology, to extract shape-based features from complex data sets, enhancing capabilities in data mining and material science. Advanced Kalman Filter Techniques in Multi-dimensional Spaces: Learn about sophisticated algorithms extending the standard Kalman filter to high-dimensional state spaces, with innovations in adaptive covariance estimation and nonlinear state models. Multi-dimensional Empirical Mode Decomposition Algorithms: Understand how to generalize EMD to higher dimensions, enabling decomposition of complex signals into intrinsic mode functions for applications in image processing and environmental monitoring. Hybrid Time-Frequency Analysis in Multi-dimensional Signal Processing: Discover how to combine the strengths of various transforms within a unified framework, allowing simultaneous analysis of localized and global features in complex applications like seismic data interpretation. Nonlinear Multi-dimensional Signal Processing with Kernel Methods: Investigate algorithms that map high-dimensional signals into reproducing kernel Hilbert spaces, enabling nonlinear operations with linear complexity. Applications in pattern recognition and data compression are discussed. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Flux, Jamie

    Editore: Independently published, 2024

    ISBN 13: 9798300997649

    Lingua: Inglese

    Da: California Books, Miami, FL, U.S.A.

    Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

    Contatta il venditore

    Print on Demand

    EUR 7,84 per la spedizione da U.S.A. a Italia

    Destinazione, tempi e costi

    Quantità: Più di 20 disponibili

    Aggiungi al carrello

    Condizione: New. Print on Demand.