Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 103,39
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Condizione: New. pp. 198.
Condizione: New. pp. 198.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 139,15
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: Revaluation Books, Exeter, Regno Unito
EUR 152,10
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 196 pages. 9.20x6.10x0.45 inches. In Stock.
EUR 152,74
Quantità: 2 disponibili
Aggiungi al carrelloHardcover. Condizione: Brand New. 196 pages. 9.25x6.50x0.75 inches. In Stock.
Editore: Springer New York, Springer US, 2013
ISBN 10: 1461429161 ISBN 13: 9781461429166
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 109,94
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The availability of today's online information systems rapidly increases the relevance of dynamic decision making within a large number of operational contexts. Whenever a sequence of interdependent decisions occurs, making a single decision raises the need for anticipation of its future impact on the entire decision process. Anticipatory support is needed for a broad variety of dynamic and stochastic decision problems from different operational contexts such as finance, energy management, manufacturing and transportation. Example problems include asset allocation, feed-in of electricity produced by wind power as well as scheduling and routing. All these problems entail a sequence of decisions contributing to an overall goal and taking place in the course of a certain period of time. Each of the decisions is derived by solution of an optimization problem. As a consequence a stochastic and dynamic decision problem resolves into a series of optimization problems to be formulated and solved by anticipation of the remaining decision process.However, actually solving a dynamic decision problem by means of approximate dynamic programming still is a major scientific challenge. Most of the work done so far is devoted to problems allowing for formulation of the underlying optimization problems as linear programs. Problem domains like scheduling and routing, where linear programming typically does not produce a significant benefit for problem solving, have not been considered so far. Therefore, the industry demand for dynamic scheduling and routing is still predominantly satisfied by purely heuristic approaches to anticipatory decision making. Although this may work well for certain dynamic decision problems, these approaches lack transferability of findings to other, related problems.This book has serves two major purposes:- It provides a comprehensive and unique view of anticipatory optimization for dynamic decision making. Itfully integrates Markov decision processes, dynamic programming, data mining and optimization and introduces a new perspective on approximate dynamic programming. Moreover, the book identifies different degrees of anticipation, enabling an assessment of specific approaches to dynamic decision making.- It shows for the first time how to successfully solve a dynamic vehicle routing problem by approximate dynamic programming. It elaborates on every building block required for this kind of approach to dynamic vehicle routing. Thereby the book has a pioneering character and is intended to provide a footing for the dynamic vehicle routing community.
EUR 111,35
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The availability of today's online information systems rapidly increases the relevance of dynamic decision making within a large number of operational contexts. Whenever a sequence of interdependent decisions occurs, making a single decision raises the need for anticipation of its future impact on the entire decision process. Anticipatory support is needed for a broad variety of dynamic and stochastic decision problems from different operational contexts such as finance, energy management, manufacturing and transportation. Example problems include asset allocation, feed-in of electricity produced by wind power as well as scheduling and routing. All these problems entail a sequence of decisions contributing to an overall goal and taking place in the course of a certain period of time. Each of the decisions is derived by solution of an optimization problem. As a consequence a stochastic and dynamic decision problem resolves into a series of optimization problems to be formulated and solved by anticipation of the remaining decision process.However, actually solving a dynamic decision problem by means of approximate dynamic programming still is a major scientific challenge. Most of the work done so far is devoted to problems allowing for formulation of the underlying optimization problems as linear programs. Problem domains like scheduling and routing, where linear programming typically does not produce a significant benefit for problem solving, have not been considered so far. Therefore, the industry demand for dynamic scheduling and routing is still predominantly satisfied by purely heuristic approaches to anticipatory decision making. Although this may work well for certain dynamic decision problems, these approaches lack transferability of findings to other, related problems.This book has serves two major purposes:- It provides a comprehensive and unique view of anticipatory optimization for dynamic decision making. Itfully integrates Markov decision processes, dynamic programming, data mining and optimization and introduces a new perspective on approximate dynamic programming. Moreover, the book identifies different degrees of anticipation, enabling an assessment of specific approaches to dynamic decision making.- It shows for the first time how to successfully solve a dynamic vehicle routing problem by approximate dynamic programming. It elaborates on every building block required for this kind of approach to dynamic vehicle routing. Thereby the book has a pioneering character and is intended to provide a footing for the dynamic vehicle routing community.
Da: Revaluation Books, Exeter, Regno Unito
EUR 177,69
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 196 pages. 9.20x6.10x0.45 inches. In Stock.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 173,91
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Like New. Like New. book.
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 106,99
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The availability of today's online information systems rapidly increases the relevance of dynamic decision making within a large number of operational contexts. Whenever a sequence of interdependent decisions occurs, making a single decision raises the need for anticipation of its future impact on the entire decision process. Anticipatory support is needed for a broad variety of dynamic and stochastic decision problems from different operational contexts such as finance, energy management, manufacturing and transportation. Example problems include asset allocation, feed-in of electricity produced by wind power as well as scheduling and routing. All these problems entail a sequence of decisions contributing to an overall goal and taking place in the course of a certain period of time. Each of the decisions is derived by solution of an optimization problem. As a consequence a stochastic and dynamic decision problem resolves into a series of optimization problems to be formulated and solved by anticipation of the remaining decision process.However, actually solving a dynamic decision problem by means of approximate dynamic programming still is a major scientific challenge. Most of the work done so far is devoted to problems allowing for formulation of the underlying optimization problems as linear programs. Problem domains like scheduling and routing, where linear programming typically does not produce a significant benefit for problem solving, have not been considered so far. Therefore, the industry demand for dynamic scheduling and routing is still predominantly satisfied by purely heuristic approaches to anticipatory decision making. Although this may work well for certain dynamic decision problems, these approaches lack transferability of findings to other, related problems.This book has serves two major purposes:- It provides a comprehensive and unique view of anticipatory optimization for dynamic decision making. It fully integrates Markov decision processes, dynamic programming, data mining and optimization and introduces a new perspective on approximate dynamic programming. Moreover, the book identifies different degrees of anticipation, enabling an assessment of specific approaches to dynamic decision making.- It shows for the first time how to successfully solve a dynamic vehicle routing problem by approximate dynamic programming. It elaborates on every building block required for this kind of approach to dynamic vehicle routing. Thereby the book has a pioneering character and is intended to provide a footing for the dynamic vehicle routing community. 182 pp. Englisch.
Editore: Springer New York Aug 2013, 2013
ISBN 10: 1461429161 ISBN 13: 9781461429166
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 106,99
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The availability of today's online information systems rapidly increases the relevance of dynamic decision making within a large number of operational contexts. Whenever a sequence of interdependent decisions occurs, making a single decision raises the need for anticipation of its future impact on the entire decision process. Anticipatory support is needed for a broad variety of dynamic and stochastic decision problems from different operational contexts such as finance, energy management, manufacturing and transportation. Example problems include asset allocation, feed-in of electricity produced by wind power as well as scheduling and routing. All these problems entail a sequence of decisions contributing to an overall goal and taking place in the course of a certain period of time. Each of the decisions is derived by solution of an optimization problem. As a consequence a stochastic and dynamic decision problem resolves into a series of optimization problems to be formulated and solved by anticipation of the remaining decision process.However, actually solving a dynamic decision problem by means of approximate dynamic programming still is a major scientific challenge. Most of the work done so far is devoted to problems allowing for formulation of the underlying optimization problems as linear programs. Problem domains like scheduling and routing, where linear programming typically does not produce a significant benefit for problem solving, have not been considered so far. Therefore, the industry demand for dynamic scheduling and routing is still predominantly satisfied by purely heuristic approaches to anticipatory decision making. Although this may work well for certain dynamic decision problems, these approaches lack transferability of findings to other, related problems.This book has serves two major purposes:- It provides a comprehensive and unique view of anticipatory optimization for dynamic decision making. It fully integrates Markov decision processes, dynamic programming, data mining and optimization and introduces a new perspective on approximate dynamic programming. Moreover, the book identifies different degrees of anticipation, enabling an assessment of specific approaches to dynamic decision making.- It shows for the first time how to successfully solve a dynamic vehicle routing problem by approximate dynamic programming. It elaborates on every building block required for this kind of approach to dynamic vehicle routing. Thereby the book has a pioneering character and is intended to provide a footing for the dynamic vehicle routing community. 196 pp. Englisch.
Da: moluna, Greven, Germania
EUR 92,27
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First book to show how to solve dynamic vehicle routing problems with approximate dynamic programming with anticipationIntroduces anticipatory optimization for dynamic decision makingExplores synergies of optimization and data mining and th.
Da: moluna, Greven, Germania
EUR 93,00
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. First book to show how to solve dynamic vehicle routing problems with approximate dynamic programming with anticipationIntroduces anticipatory optimization for dynamic decision makingExplores synergies of optimization and data mining and th.
Da: Majestic Books, Hounslow, Regno Unito
EUR 149,36
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 198 38 Illus.
Da: Majestic Books, Hounslow, Regno Unito
EUR 152,78
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 198 38 Illus.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 150,22
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 198.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 153,60
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 198.
Editore: Springer New York, Springer US Aug 2013, 2013
ISBN 10: 1461429161 ISBN 13: 9781461429166
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 106,99
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The availability of today¿s online information systems rapidly increases the relevance of dynamic decision making within a large number of operational contexts. Whenever a sequence of interdependent decisions occurs, making a single decision raises the need for anticipation of its future impact on the entire decision process. Anticipatory support is needed for a broad variety of dynamic and stochastic decision problems from different operational contexts such as finance, energy management, manufacturing and transportation. Example problems include asset allocation, feed-in of electricity produced by wind power as well as scheduling and routing. All these problems entail a sequence of decisions contributing to an overall goal and taking place in the course of a certain period of time. Each of the decisions is derived by solution of an optimization problem. As a consequence a stochastic and dynamic decision problem resolves into a series of optimization problems to be formulated and solved by anticipation of the remaining decision process.However, actually solving a dynamic decision problem by means of approximate dynamic programming still is a major scientific challenge. Most of the work done so far is devoted to problems allowing for formulation of the underlying optimization problems as linear programs. Problem domains like scheduling and routing, where linear programming typically does not produce a significant benefit for problem solving, have not been considered so far. Therefore, the industry demand for dynamic scheduling and routing is still predominantly satisfied by purely heuristic approaches to anticipatory decision making. Although this may work well for certain dynamic decision problems, these approaches lack transferability of findings to other, related problems.This book has serves two major purposes:¿ It provides a comprehensive and unique view of anticipatory optimization for dynamic decision making. Itfully integrates Markov decision processes, dynamic programming, data mining and optimization and introduces a new perspective on approximate dynamic programming. Moreover, the book identifies different degrees of anticipation, enabling an assessment of specific approaches to dynamic decision making.¿ It shows for the first time how to successfully solve a dynamic vehicle routing problem by approximate dynamic programming. It elaborates on every building block required for this kind of approach to dynamic vehicle routing. Thereby the book has a pioneering character and is intended to provide a footing for the dynamic vehicle routing community.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch.