Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New.
Da: Lakeside Books, Benton Harbor, MI, U.S.A.
Condizione: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition.
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Prima edizione
Paperback. Condizione: new. Paperback. Implement deep learning applications using TensorFlow while learning the why through in-depth conceptual explanations. Youll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpyothers are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers. You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, youll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, youll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 49,34
Quantità: 15 disponibili
Aggiungi al carrelloCondizione: New. 2020. Paperback. . . . . .
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 44,69
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Revaluation Books, Exeter, Regno Unito
EUR 54,78
Quantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 295 pages. 9.00x6.00x0.70 inches. In Stock.
Condizione: New. 2020. Paperback. . . . . . Books ship from the US and Ireland.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 55,49
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 63,47
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st ed. edition NO-PA16APR2015-KAP.
Da: moluna, Greven, Germania
EUR 48,37
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: AussieBookSeller, Truganina, VIC, Australia
Prima edizione
EUR 79,07
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. Implement deep learning applications using TensorFlow while learning the why through in-depth conceptual explanations. Youll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpyothers are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers. You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, youll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, youll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
EUR 58,84
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neuware -Implement deep learning applications using TensorFlow while learning the ¿why¿ through in-depth conceptual explanations.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 316 pp. Englisch.
Da: preigu, Osnabrück, Germania
EUR 50,35
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Applied Neural Networks with TensorFlow 2 | API Oriented Deep Learning with Python | Orhan Gazi Yalç¿n | Taschenbuch | xix | Englisch | 2020 | Apress | EAN 9781484265123 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 58,84
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Implement deep learning applications using TensorFlow while learning the 'why' through in-depth conceptual explanations. You'll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy-others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you'll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, you'll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs. 316 pp. Englisch.
Da: Majestic Books, Hounslow, Regno Unito
EUR 86,48
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 87,10
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 59,97
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Implement deep learning applications using TensorFlow while learning the 'why' through in-depth conceptual explanations. You'll start by learning what deep learning offers over other machine learning models. Then familiarize yourself with several technologies used to create deep learning models. While some of these technologies are complementary, such as Pandas, Scikit-Learn, and Numpy-others are competitors, such as PyTorch, Caffe, and Theano. This book clarifies the positions of deep learning and Tensorflow among their peers.You'll then work on supervised deep learning models to gain applied experience with the technology. A single-layer of multiple perceptrons will be used to build a shallow neural network before turning it into a deep neural network. After showing the structure of the ANNs, a real-life application will be created with Tensorflow 2.0 Keras API. Next, you'll work on data augmentation and batch normalization methods. Then, the Fashion MNIST dataset will be used to train a CNN. CIFAR10 and Imagenet pre-trained models will be loaded to create already advanced CNNs. Finally, move into theoretical applications and unsupervised learning with auto-encoders and reinforcement learning with tf-agent models. With this book, you'll delve into applied deep learning practical functions and build a wealth of knowledge about how to use TensorFlow effectively. What You'll Learn Compare competing technologies and see why TensorFlow is more popularGenerate text, image, or sound with GANsPredict the rating or preference a user will give to an itemSequence data with recurrent neural networks Who This Book Is For Data scientists and programmers new to the fields of deep learning and machine learning APIs.