Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: HPB-Red, Dallas, TX, U.S.A.
EUR 25,72
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrellopaperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: Labyrinth Books, Princeton, NJ, U.S.A.
EUR 32,83
Convertire valutaQuantità: 7 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Princeton University Press, Princeton, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
EUR 31,92
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Near Fine. A nice, solid copy. ; Annals Of Mathematics Studies; Vol. 176; 6.5 X 1 X 9.5 inches; 425 pages.
Editore: Princeton University Press, Princeton, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
EUR 35,47
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Near Fine. A nice, solid copy. ; Annals of Mathematics Studies; Vol. 176; 6.5 X 1 X 9.5 inches; 425 pages.
Da: Labyrinth Books, Princeton, NJ, U.S.A.
EUR 56,80
Convertire valutaQuantità: 7 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 52,24
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 79,82
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New.
Da: Books Puddle, New York, NY, U.S.A.
EUR 79,06
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. 1st ed. 2023 edition NO-PA16APR2015-KAP.
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: PBShop.store US, Wood Dale, IL, U.S.A.
EUR 82,83
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000.
Editore: Springer International Publishing AG, 2023
ISBN 10: 3031326288 ISBN 13: 9783031326288
Lingua: Inglese
Da: TextbookRush, Grandview Heights, OH, U.S.A.
EUR 79,49
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloCondizione: Brand New. Ships SAME or NEXT business day. We Ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days within the United States. See our member profile for customer support contact info. We have an easy return policy.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 85,90
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Majestic Books, Hounslow, Regno Unito
EUR 80,78
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Da: Books Puddle, New York, NY, U.S.A.
EUR 86,80
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 82,53
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 77,93
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 82,59
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
EUR 91,01
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000.
Da: Chiron Media, Wallingford, Regno Unito
EUR 79,24
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: New.
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 87,38
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. This title gives an algorithm for computing coefficients of modular forms of level one in polynomial time. Editor(s): Edixhoven, Bas; Couveignes, Jean-Marc. Series: Annals of Mathematics Studies. Num Pages: 440 pages, 6 line illus. BIC Classification: PBH; PBMW. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 234 x 157 x 22. Weight in Grams: 622. . 2011. Paperback. . . . .
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 101,30
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 86,93
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 96,06
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 97,78
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 658.
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: Majestic Books, Hounslow, Regno Unito
EUR 108,62
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 440.
Editore: Princeton University Press, US, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
EUR 116,51
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloPaperback. Condizione: New. Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program.The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: Kennys Bookstore, Olney, MD, U.S.A.
EUR 108,88
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. This title gives an algorithm for computing coefficients of modular forms of level one in polynomial time. Editor(s): Edixhoven, Bas; Couveignes, Jean-Marc. Series: Annals of Mathematics Studies. Num Pages: 440 pages, 6 line illus. BIC Classification: PBH; PBMW. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 234 x 157 x 22. Weight in Grams: 622. . 2011. Paperback. . . . . Books ship from the US and Ireland.
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: Books Puddle, New York, NY, U.S.A.
EUR 119,30
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 440.
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 121,19
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Editore: Princeton University Press, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 107,85
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Princeton University Press, US, 2011
ISBN 10: 0691142025 ISBN 13: 9780691142029
Lingua: Inglese
Da: Rarewaves.com USA, London, LONDO, Regno Unito
EUR 126,08
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: New. Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program.The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields. The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.