EUR 57,76
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Used. pp. 268.
EUR 57,81
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Used. pp. 268.
EUR 58,85
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Used. pp. 268.
Editore: Springer Berlin Heidelberg, 2013
ISBN 10: 3662145065 ISBN 13: 9783662145067
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 53,49
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - We consider quantum dynamical systems (in general, these could be either Hamiltonian or dissipative, but in this review we shall be interested only in quantum Hamiltonian systems) that have, at least formally, a classical limit. This means, in particular, that each time-dependent quantum-mechanical expectation value X (t) has as i cl Ii -+ 0 a limit Xi(t) -+ x1 )(t) of the corresponding classical sys tem. Quantum-mechanical considerations include an additional di mensionless parameter f = iiiconst. connected with the Planck constant Ii. Even in the quasiclassical region where f~ 1, the dy namics of the quantum and classicalfunctions Xi(t) and XiCcl)(t) will be different, in general, and quantum dynamics for expectation val ues may coincide with classical dynamics only for some finite time. This characteristic time-scale, TIi., could depend on several factors which will be discussed below, including: choice of expectation val ues, initial state, physical parameters and so on. Thus, the problem arises in this connection: How to estimate the characteristic time scale TIi. of the validity of the quasiclassical approximation and how to measure it in an experiment For rather simple integrable quan tum systems in the stable regions of motion of their corresponding classical phase space, this time-scale T'' usually is of order (see, for example, [2]) const TIi. = p,li , (1.1) Q where p, is the dimensionless parameter of nonlinearity (discussed below) and a is a constant of the order of unity.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 62,07
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: Chiron Media, Wallingford, Regno Unito
EUR 58,93
Convertire valutaQuantità: 10 disponibili
Aggiungi al carrelloPaperback. Condizione: New.
EUR 82,72
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. pp. 284.
Editore: Springer Berlin Heidelberg, Springer Berlin Heidelberg Nov 2013, 2013
ISBN 10: 3662145065 ISBN 13: 9783662145067
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 85,59
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neuware -We consider quantum dynamical systems (in general, these could be either Hamiltonian or dissipative, but in this review we shall be interested only in quantum Hamiltonian systems) that have, at least formally, a classical limit. This means, in particular, that each time-dependent quantum-mechanical expectation value X (t) has as i cl Ii -+ 0 a limit Xi(t) -+ x1 )(t) of the corresponding classical sys tem. Quantum-mechanical considerations include an additional di mensionless parameter f = iiiconst. connected with the Planck constant Ii. Even in the quasiclassical region where f~ 1, the dy namics of the quantum and classicalfunctions Xi(t) and XiCcl)(t) will be different, in general, and quantum dynamics for expectation val ues may coincide with classical dynamics only for some finite time. This characteristic time-scale, TIi., could depend on several factors which will be discussed below, including: choice of expectation val ues, initial state, physical parameters and so on. Thus, the problem arises in this connection: How to estimate the characteristic time scale TIi. of the validity of the quasiclassical approximation and how to measure it in an experiment For rather simple integrable quan tum systems in the stable regions of motion of their corresponding classical phase space, this time-scale T'' usually is of order (see, for example, [2]) const TIi. = p,li , (1.1) Q where p, is the dimensionless parameter of nonlinearity (discussed below) and a is a constant of the order of unity.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 284 pp. Englisch.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 79,40
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Like New. Like New. book.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 54,04
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 101,39
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Like New. Like New. book.
Editore: Springer Berlin Heidelberg, 2013
ISBN 10: 3662145065 ISBN 13: 9783662145067
Lingua: Inglese
Da: moluna, Greven, Germania
EUR 48,74
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This monograph compares classical and quantum dynamics for unstable (chaotic) systems. Characteristic times for divergence of classical and quantum solutions are estimated, and examples of classical-quantum crossover-times are provided. The book can be re.
Editore: Springer Berlin Heidelberg Nov 2013, 2013
ISBN 10: 3662145065 ISBN 13: 9783662145067
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 53,49
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -We consider quantum dynamical systems (in general, these could be either Hamiltonian or dissipative, but in this review we shall be interested only in quantum Hamiltonian systems) that have, at least formally, a classical limit. This means, in particular, that each time-dependent quantum-mechanical expectation value X (t) has as i cl Ii -+ 0 a limit Xi(t) -+ x1 )(t) of the corresponding classical sys tem. Quantum-mechanical considerations include an additional di mensionless parameter f = iiiconst. connected with the Planck constant Ii. Even in the quasiclassical region where f~ 1, the dy namics of the quantum and classicalfunctions Xi(t) and XiCcl)(t) will be different, in general, and quantum dynamics for expectation val ues may coincide with classical dynamics only for some finite time. This characteristic time-scale, TIi., could depend on several factors which will be discussed below, including: choice of expectation val ues, initial state, physical parameters and so on. Thus, the problem arises in this connection: How to estimate the characteristic time scale TIi. of the validity of the quasiclassical approximation and how to measure it in an experiment For rather simple integrable quan tum systems in the stable regions of motion of their corresponding classical phase space, this time-scale T'' usually is of order (see, for example, [2]) const TIi. = p,li , (1.1) Q where p, is the dimensionless parameter of nonlinearity (discussed below) and a is a constant of the order of unity. 284 pp. Englisch.
Da: Majestic Books, Hounslow, Regno Unito
EUR 84,53
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 284 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 86,34
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 284.