Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 44,77
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Best Price, Torrance, CA, U.S.A.
EUR 39,20
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Editore: Packt Publishing 2/29/2024, 2024
ISBN 10: 1804618128 ISBN 13: 9781804618127
Lingua: Inglese
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
EUR 48,01
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloPaperback or Softback. Condizione: New. Data-Centric Machine Learning with Python: The ultimate guide to engineering and deploying high-quality models based on good data 1.43. Book.
Da: California Books, Miami, FL, U.S.A.
EUR 48,41
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 49,44
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 50,18
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 50,17
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 56,44
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Books Puddle, New York, NY, U.S.A.
EUR 82,71
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 70,28
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrellopaperback. Condizione: New. New. book.
Da: PBShop.store US, Wood Dale, IL, U.S.A.
EUR 57,08
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloPAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
EUR 53,31
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloPAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 58,10
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526.
Da: Majestic Books, Hounslow, Regno Unito
EUR 84,33
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 86,32
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 70,84
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Join the data-centric revolution and master the concepts, techniques, and algorithms shaping the future of AI and ML development, using PythonKey Features Grasp the principles of data centricity and apply them to real-world scenarios Gain experience with quality data collection, labeling, and synthetic data creation using Python Develop essential skills for building reliable, responsible, and ethical machine learning solutions Purchase of the print or Kindle book includes a free PDF Elektronisches BuchBook DescriptionIn the rapidly advancing data-driven world where data quality is pivotal to the success of machine learning and artificial intelligence projects, this critically timed guide provides a rare, end-to-end overview of data-centric machine learning (DCML), along with hands-on applications of technical and non-technical approaches to generating deeper and more accurate datasets.This book will help you understand what data-centric ML/AI is and how it can help you to realize the potential of 'small data'. Delving into the building blocks of data-centric ML/AI, you'll explore the human aspects of data labeling, tackle ambiguity in labeling, and understand the role of synthetic data. From strategies to improve data collection to techniques for refining and augmenting datasets, you'll learn everything you need to elevate your data-centric practices. Through applied examples and insights for overcoming challenges, you'll get a roadmap for implementing data-centric ML/AI in diverse applications in Python.By the end of this book, you'll have developed a profound understanding of data-centric ML/AI and the proficiency to seamlessly integrate common data-centric approaches in the model development lifecycle to unlock the full potential of your machine learning projects by prioritizing data quality and reliability.What you will learn Understand the impact of input data quality compared to model selection and tuning Recognize the crucial role of subject-matter experts in effective model development Implement data cleaning, labeling, and augmentation best practices Explore common synthetic data generation techniques and their applications Apply synthetic data generation techniques using common Python packages Detect and mitigate bias in a dataset using best-practice techniques Understand the importance of reliability, responsibility, and ethical considerations in ML/AIWho this book is forThis book is for data science professionals and machine learning enthusiasts looking to understand the concept of data-centricity, its benefits over a model-centric approach, and the practical application of a best-practice data-centric approach in their work. This book is also for other data professionals and senior leaders who want to explore the tools and techniques to improve data quality and create opportunities for small data ML/AI in their organizations.Table of Contents Exploring Data-Centric Machine Learning From Model-Centric to Data-Centric - ML's Evolution Principles of Data-Centric ML Data Labeling Is a Collaborative Process Techniques for Data Cleaning Techniques for Programmatic Labeling in Machine Learning Using Synthetic Data in Data-Centric Machine Learning Techniques for Identifying and Removing Bias Dealing with Edge Cases and Rare Events in Machine Learning Kick-Starting Your Journey in Data-Centric Machine Learning.