Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 216,56
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Condizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 215,83
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 236,38
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 226,98
Quantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Like New. Like New. book.
Condizione: As New. Unread book in perfect condition.
Da: Revaluation Books, Exeter, Regno Unito
EUR 286,34
Quantità: 2 disponibili
Aggiungi al carrelloHardcover. Condizione: Brand New. 192 pages. 9.33x6.30x0.59 inches. In Stock.
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
EUR 225,53
Quantità: Più di 20 disponibili
Aggiungi al carrelloHRD. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
HRD. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Da: moluna, Greven, Germania
EUR 179,01
Quantità: Più di 20 disponibili
Aggiungi al carrelloGebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Alexander Stoimenow is an assistant professor in the GIST College at the Gwangju Institute of Science and Technology. He was previously an assistant professor in the Department of Mathematics at Keimyung University, Daegu, South Korea. H.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 284,75
Quantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In knot theory, diagrams of a given canonical genus can be described by means of a finite number of patterns ('generators'). This book presents a self-contained account of the canonical genus: the genus of knot diagrams. The author explores recent research on the combinatorial theory of knots and supplies proofs for a number of theorems. He gives a detailed structure theorem for canonical Seifert surfaces of a given genus and covers applications, such as the braid index of alternating knots and hyperbolic volume.