Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 103,83
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 103,83
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 110,70
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 110,70
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Condizione: New. pp. 442.
Da: Revaluation Books, Exeter, Regno Unito
EUR 154,72
Quantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 436 pages. 9.25x6.25x1.00 inches. In Stock.
EUR 96,40
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Differential and Difference Dimension Polynomials | Alexander V. Mikhalev (u. a.) | Taschenbuch | xiii | Englisch | 2010 | Springer | EAN 9789048151417 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Editore: Springer Netherlands, Springer Netherlands Nov 1998, 1998
ISBN 10: 0792354842 ISBN 13: 9780792354840
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 106,99
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Neuware -The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 444 pp. Englisch.
Editore: Springer Netherlands, Springer Netherlands, 2010
ISBN 10: 9048151414 ISBN 13: 9789048151417
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 112,94
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M.
Editore: Springer Netherlands, Springer Netherlands, 1998
ISBN 10: 0792354842 ISBN 13: 9780792354840
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 114,36
Quantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 174,06
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Like New. Like New. book.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 174,06
Quantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Like New. Like New. book.
Editore: Springer Netherlands Nov 1998, 1998
ISBN 10: 0792354842 ISBN 13: 9780792354840
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 106,99
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M. 444 pp. Englisch.
Editore: Springer Netherlands Dez 2010, 2010
ISBN 10: 9048151414 ISBN 13: 9789048151417
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 106,99
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M. 444 pp. Englisch.
Da: moluna, Greven, Germania
EUR 92,27
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential d.
Da: moluna, Greven, Germania
EUR 92,27
Quantità: Più di 20 disponibili
Aggiungi al carrelloGebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential d.
Da: Majestic Books, Hounslow, Regno Unito
EUR 155,81
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 442 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Da: preigu, Osnabrück, Germania
EUR 96,40
Quantità: 5 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Differential and Difference Dimension Polynomials | Alexander V. Mikhalev (u. a.) | Buch | xiii | Englisch | 1998 | Springer Netherland | EAN 9780792354840 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 156,54
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 442.
Editore: Springer Netherlands, Springer Netherlands Dez 2010, 2010
ISBN 10: 9048151414 ISBN 13: 9789048151417
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 106,99
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen tial equations were actively developed by F. Riquier [RiqlO] and M.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 444 pp. Englisch.