Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 70,92
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: California Books, Miami, FL, U.S.A.
EUR 73,23
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: GreatBookPrices, Columbia, MD, U.S.A.
EUR 75,08
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 75,25
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 75,24
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
EUR 93,12
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloHardback. Condizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 81,90
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Rarewaves.com USA, London, LONDO, Regno Unito
EUR 124,13
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloHardback. Condizione: New.
Da: CitiRetail, Stevenage, Regno Unito
EUR 80,16
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: new. Hardcover. Federated Learning (FL) is a new collaborative learning method that allows multiple data owners to cooperate in ML model training without exposing private data. Split Learning (SL) is an emerging collaborative learning method that splits an ML model into multiple portions that are trained collaboratively by different entities. FL and SL, each have unique advantages and respective limitations, may complement each other to facilitate effective collaborative learning in the Internet of Things (IoT). The rapid development of edge-cloud computing technologies enables a distributed platform upon which the FL and SL frameworks can be deployed. Therefore, FL and SL deployed upon an edge-cloud platform in an IoT environment have formed an active research area that attracts interest from both academia and industry. This reprint of the special issue "Edge-Cloud Computing and Federated-Split Learning in the Internet of Things" aims to present the latest research advances in this interdisciplinary field of edge-cloud computing and federated-split learning. This special issue includes twelve research articles that address various aspects of edge-cloud computing and federated-split learning, including technologies for improving the performance and efficiency of FL and SL in edge-cloud computing environments, mechanisms for protecting the data privacy and system security in FL and SL frameworks, and exploitation of FL/SL-based ML methods together with edge/cloud computing technologies for supporting various IoT applications. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Da: Books Puddle, New York, NY, U.S.A.
EUR 121,17
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New.
Da: Rarewaves USA United, OSWEGO, IL, U.S.A.
EUR 95,33
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloHardback. Condizione: New.
Da: Rarewaves.com UK, London, Regno Unito
EUR 116,19
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloHardback. Condizione: New.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 128,56
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 82,47
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Federated Learning (FL) is a new collaborative learning method that allows multiple data owners to cooperate in ML model training without exposing private data. Split Learning (SL) is an emerging collaborative learning method that splits an ML model into multiple portions that are trained collaboratively by different entities. FL and SL, each have unique advantages and respective limitations, may complement each other to facilitate effective collaborative learning in the Internet of Things (IoT). The rapid development of edge-cloud computing technologies enables a distributed platform upon which the FL and SL frameworks can be deployed. Therefore, FL and SL deployed upon an edge-cloud platform in an IoT environment have formed an active research area that attracts interest from both academia and industry. This reprint of the special issue 'Edge-Cloud Computing and Federated-Split Learning in the Internet of Things' aims to present the latest research advances in this interdisciplinary field of edge-cloud computing and federated-split learning. This special issue includes twelve research articles that address various aspects of edge-cloud computing and federated-split learning, including technologies for improving the performance and efficiency of FL and SL in edge-cloud computing environments, mechanisms for protecting the data privacy and system security in FL and SL frameworks, and exploitation of FL/SL-based ML methods together with edge/cloud computing technologies for supporting various IoT applications.