Da: thebookforest.com, San Rafael, CA, U.S.A.
EUR 112,58
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. Well packaged and promptly shipped from California. Partnered with Friends of the Library since 2010.
Da: BennettBooksLtd, San Diego, NV, U.S.A.
EUR 151,48
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrellohardcover. Condizione: New. In shrink wrap. Looks like an interesting title!
Da: Best Price, Torrance, CA, U.S.A.
EUR 191,45
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Da: Best Price, Torrance, CA, U.S.A.
EUR 191,45
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 202,28
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 202,54
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 193,87
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In English.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 193,87
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Springer New York, Springer US Nov 2010, 2010
ISBN 10: 144192194X ISBN 13: 9781441921949
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 213,99
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neuware -The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 516 pp. Englisch.
EUR 227,74
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloGebunden. Condizione: New. Mixture models are nowadays applied in many different areas such as biometrics, medicine, marketing whereas switching models are applied essentially in economics and financeThe past decade has seen powerful new computational tools for modeling which .
EUR 217,46
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The prominence of finite mixture modelling is greater than ever. Many important statistical topics like clustering data, outlier treatment, or dealing with unobserved heterogeneity involve finite mixture models in some way or other. The area of potential applications goes beyond simple data analysis and extends to regression analysis and to non-linear time series analysis using Markov switching models.For more than the hundred years since Karl Pearson showed in 1894 how to estimate the five parameters of a mixture of two normal distributions using the method of moments, statistical inference for finite mixture models has been a challenge to everybody who deals with them. In the past ten years, very powerful computational tools emerged for dealing with these models which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book reviews these techniques and covers the most recent advances in the field, among them bridge sampling techniques and reversible jump Markov chain Monte Carlo methods.It is the first time that the Bayesian perspective of finite mixture modelling is systematically presented in book form. It is argued that the Bayesian approach provides much insight in this context and is easily implemented in practice. Although the main focus is on Bayesian inference, the author reviews several frequentist techniques, especially selecting the number of components of a finite mixture model, and discusses some of their shortcomings compared to the Bayesian approach.The aim of this book is to impart the finite mixture and Markov switching approach to statistical modelling to a wide-ranging community. This includes not only statisticians, but also biologists, economists, engineers, financial agents, market researcher, medical researchers or any other frequent user of statistical models. This book should help newcomers to the field to understand how finite mixture andMarkov switching models are formulated, what structures they imply on the data, what they could be used for, and how they are estimated. Researchers familiar with the subject also will profit from reading this book. The presentation is rather informal without abandoning mathematical correctness. Previous notions of Bayesian inference and Monte Carlo simulation are useful but not needed.Sylvia Frühwirth-Schnatter is Professor of Applied Statistics and Econometrics at the Department of Applied Statistics of the Johannes Kepler University in Linz, Austria. She received her Ph.D. in mathematics from the University of Technology in Vienna in 1988. She has published in many leading journals in applied statistics and econometrics on topics such as Bayesian inference, finite mixture models, Markov switching models, state space models, and their application in marketing, economics and finance.
EUR 220,29
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The prominence of finite mixture modelling is greater than ever. Many important statistical topics like clustering data, outlier treatment, or dealing with unobserved heterogeneity involve finite mixture models in some way or other. The area of potential applications goes beyond simple data analysis and extends to regression analysis and to non-linear time series analysis using Markov switching models.For more than the hundred years since Karl Pearson showed in 1894 how to estimate the five parameters of a mixture of two normal distributions using the method of moments, statistical inference for finite mixture models has been a challenge to everybody who deals with them. In the past ten years, very powerful computational tools emerged for dealing with these models which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book reviews these techniques and covers the most recent advances in the field, among them bridge sampling techniques and reversible jump Markov chain Monte Carlo methods.It is the first time that the Bayesian perspective of finite mixture modelling is systematically presented in book form. It is argued that the Bayesian approach provides much insight in this context and is easily implemented in practice. Although the main focus is on Bayesian inference, the author reviews several frequentist techniques, especially selecting the number of components of a finite mixture model, and discusses some of their shortcomings compared to the Bayesian approach.The aim of this book is to impart the finite mixture and Markov switching approach to statistical modelling to a wide-ranging community. This includes not only statisticians, but also biologists, economists, engineers, financial agents, market researcher, medical researchers or any other frequent user of statistical models. This book should help newcomers to the field to understand how finite mixture andMarkov switching models are formulated, what structures they imply on the data, what they could be used for, and how they are estimated. Researchers familiar with the subject also will profit from reading this book. The presentation is rather informal without abandoning mathematical correctness. Previous notions of Bayesian inference and Monte Carlo simulation are useful but not needed.Sylvia Frühwirth-Schnatter is Professor of Applied Statistics and Econometrics at the Department of Applied Statistics of the Johannes Kepler University in Linz, Austria. She received her Ph.D. in mathematics from the University of Technology in Vienna in 1988. She has published in many leading journals in applied statistics and econometrics on topics such as Bayesian inference, finite mixture models, Markov switching models, state space models, and their application in marketing, economics and finance.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 288,22
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Like New. Like New. book.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 298,85
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Like New. Like New. book.
Da: Revaluation Books, Exeter, Regno Unito
EUR 297,99
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 492 pages. 9.00x6.10x1.20 inches. In Stock.
Da: moluna, Greven, Germania
EUR 180,07
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Mixture models are nowadays applied in many different areas such as biometrics, medicine, marketing whereas switching models are applied essentially in economics and financeThe past decade has seen powerful new computational tools for modeling which .
Editore: Springer New York Aug 2006, 2006
ISBN 10: 0387329099 ISBN 13: 9780387329093
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 213,99
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The prominence of finite mixture modelling is greater than ever. Many important statistical topics like clustering data, outlier treatment, or dealing with unobserved heterogeneity involve finite mixture models in some way or other. The area of potential applications goes beyond simple data analysis and extends to regression analysis and to non-linear time series analysis using Markov switching models.For more than the hundred years since Karl Pearson showed in 1894 how to estimate the five parameters of a mixture of two normal distributions using the method of moments, statistical inference for finite mixture models has been a challenge to everybody who deals with them. In the past ten years, very powerful computational tools emerged for dealing with these models which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book reviews these techniques and covers the most recent advances in the field, among them bridge sampling techniques and reversible jump Markov chain Monte Carlo methods.It is the first time that the Bayesian perspective of finite mixture modelling is systematically presented in book form. It is argued that the Bayesian approach provides much insight in this context and is easily implemented in practice. Although the main focus is on Bayesian inference, the author reviews several frequentist techniques, especially selecting the number of components of a finite mixture model, and discusses some of their shortcomings compared to the Bayesian approach.The aim of this book is to impart the finite mixture and Markov switching approach to statistical modelling to a wide-ranging community. This includes not only statisticians, but also biologists, economists, engineers, financial agents, market researcher, medical researchers or any other frequent user of statistical models. This book should help newcomers to the field to understand how finite mixture andMarkov switching models are formulated, what structures they imply on the data, what they could be used for, and how they are estimated. Researchers familiar with the subject also will profit from reading this book. The presentation is rather informal without abandoning mathematical correctness. Previous notions of Bayesian inference and Monte Carlo simulation are useful but not needed.Sylvia Frühwirth-Schnatter is Professor of Applied Statistics and Econometrics at the Department of Applied Statistics of the Johannes Kepler University in Linz, Austria. She received her Ph.D. in mathematics from the University of Technology in Vienna in 1988. She has published in many leading journals in applied statistics and econometrics on topics such as Bayesian inference, finite mixture models, Markov switching models, state space models, and their application in marketing, economics and finance. 494 pp. Englisch.
Editore: Springer New York Nov 2010, 2010
ISBN 10: 144192194X ISBN 13: 9781441921949
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 213,99
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The prominence of finite mixture modelling is greater than ever. Many important statistical topics like clustering data, outlier treatment, or dealing with unobserved heterogeneity involve finite mixture models in some way or other. The area of potential applications goes beyond simple data analysis and extends to regression analysis and to non-linear time series analysis using Markov switching models.For more than the hundred years since Karl Pearson showed in 1894 how to estimate the five parameters of a mixture of two normal distributions using the method of moments, statistical inference for finite mixture models has been a challenge to everybody who deals with them. In the past ten years, very powerful computational tools emerged for dealing with these models which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book reviews these techniques and covers the most recent advances in the field, among them bridge sampling techniques and reversible jump Markov chain Monte Carlo methods.It is the first time that the Bayesian perspective of finite mixture modelling is systematically presented in book form. It is argued that the Bayesian approach provides much insight in this context and is easily implemented in practice. Although the main focus is on Bayesian inference, the author reviews several frequentist techniques, especially selecting the number of components of a finite mixture model, and discusses some of their shortcomings compared to the Bayesian approach.The aim of this book is to impart the finite mixture and Markov switching approach to statistical modelling to a wide-ranging community. This includes not only statisticians, but also biologists, economists, engineers, financial agents, market researcher, medical researchers or any other frequent user of statistical models. This book should help newcomers to the field to understand how finite mixture andMarkov switching models are formulated, what structures they imply on the data, what they could be used for, and how they are estimated. Researchers familiar with the subject also will profit from reading this book. The presentation is rather informal without abandoning mathematical correctness. Previous notions of Bayesian inference and Monte Carlo simulation are useful but not needed.Sylvia Frühwirth-Schnatter is Professor of Applied Statistics and Econometrics at the Department of Applied Statistics of the Johannes Kepler University in Linz, Austria. She received her Ph.D. in mathematics from the University of Technology in Vienna in 1988. She has published in many leading journals in applied statistics and econometrics on topics such as Bayesian inference, finite mixture models, Markov switching models, state space models, and their application in marketing, economics and finance. 516 pp. Englisch.