Condizione: New.
Condizione: As New. Unread book in perfect condition.
Condizione: New. pp. 549.
EUR 67,60
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 549.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 63,53
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 74,03
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 549.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 70,54
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 71,11
Quantità: 1 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 1041.
EUR 101,80
Quantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. reprint edition. 549 pages. 9.75x7.00x1.25 inches. In Stock.
EUR 61,65
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Flexible Regression and Smoothing | Using GAMLSS in R | Mikis D. Stasinopoulos (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2020 | Chapman and Hall/CRC | EAN 9780367658069 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 128,42
Quantità: 10 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 147,49
Quantità: 10 disponibili
Aggiungi al carrelloCondizione: New.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 144,88
Quantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: New. New. Ships from Multiple Locations. book.
EUR 128,84
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Vlasios Voudouris, Fernanda De BastianiThis book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Gener.
EUR 161,00
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Neuware - This book provides a broad overview of GAMLSS methodology and how it is implemented in R. It includes a comprehensive collection of real data examples, integrated code, and figures to illustrate the methods, and is supplemented by a website.
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 73,81
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent.In particular, the GAMLSS statistical framework enables flexible regression and smoothing models to be fitted to the data. The GAMLSS model assumes that the response variable has any parametric (continuous, discrete or mixed) distribution which might be heavy- or light-tailed, and positively or negatively skewed. In addition, all the parameters of the distribution (location, scale, shape) can be modelled as linear or smooth functions of explanatory variables. Key Features:Provides a broad overview of flexible regression and smoothing techniques to learn from data whilst also focusing on the practical application of methodology using GAMLSS software in R. Includes a comprehensive collection of real data examples, which reflect the range of problems addressed by GAMLSS models and provide a practical illustration of the process of using flexible GAMLSS models for statistical learning.R code integrated into the text for ease of understanding and replication.Supplemented by a website with code, data and extra materials.This book aims to help readers understand how to learn from data encountered in many fields. It will be useful for practitioners and researchers who wish to understand and use the GAMLSS models to learn from data and also for students who wish to learn GAMLSS through practical examples.