EUR 43,60
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present.
EUR 42,96
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. xviii + 248.
EUR 41,85
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Fair. No Jacket. Missing dust jacket; Readable copy. Pages may have considerable notes/highlighting. ~ ThriftBooks: Read More, Spend Less 1.65.
EUR 47,50
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloCondizione: NEW.
EUR 59,94
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloHRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000.
EUR 54,30
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloHRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000.
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 59,56
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloCondizione: New. 2006. Hardcover. A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Series: Adaptive Computation and Machine Learning Series. Num Pages: 266 pages, Illustrations. BIC Classification: PBW; UYQM. Category: (P) Professional & Vocational. Dimension: 261 x 212 x 18. Weight in Grams: 720. . . . . .
EUR 64,45
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
EUR 54,20
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. xviii + 248.
EUR 65,90
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
EUR 65,90
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloCondizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
EUR 51,16
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
EUR 51,24
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 58,40
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: New. pp. xviii + 248 Illus.
Da: Revaluation Books, Exeter, Regno Unito
EUR 57,88
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Brand New. 2448 pages. 10.00x7.00x1.00 inches. In Stock.
EUR 52,54
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 60,29
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: SecondSale, Montgomery, IL, U.S.A.
EUR 41,82
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
EUR 72,52
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloCondizione: New. 2006. Hardcover. A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Series: Adaptive Computation and Machine Learning Series. Num Pages: 266 pages, Illustrations. BIC Classification: PBW; UYQM. Category: (P) Professional & Vocational. Dimension: 261 x 212 x 18. Weight in Grams: 720. . . . . . Books ship from the US and Ireland.
EUR 61,18
Convertire valutaQuantità: 3 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
EUR 65,49
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloHardback. Condizione: New. New copy - Usually dispatched within 3 working days. 950.
EUR 65,78
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Neuware - A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines.
Da: Revaluation Books, Exeter, Regno Unito
EUR 82,39
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Brand New. 2448 pages. 10.00x7.00x1.00 inches. In Stock.
Da: HPB-Red, Dallas, TX, U.S.A.
EUR 38,31
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Editore: MIT Press Ltd, Cambridge, Mass., 2005
ISBN 10: 026218253X ISBN 13: 9780262182539
Lingua: Inglese
Da: Grand Eagle Retail, Fairfield, OH, U.S.A.
EUR 69,33
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: new. Hardcover. A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines.Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes. A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Editore: MIT Press Ltd, Cambridge, Mass., 2005
ISBN 10: 026218253X ISBN 13: 9780262182539
Lingua: Inglese
Da: AussieBookSeller, Truganina, VIC, Australia
EUR 105,33
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: new. Hardcover. A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines.Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes. A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Da: BennettBooksLtd, North Las Vegas, NV, U.S.A.
EUR 107,88
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrellohardcover. Condizione: New. In shrink wrap. Looks like an interesting title!
EUR 139,00
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloCondizione: Usado - bueno.