Da: Toscana Books, AUSTIN, TX, U.S.A.
Paperback. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks.
Da: Majestic Books, Hounslow, Regno Unito
EUR 70,27
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 188.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New.
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 188.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 79,96
Quantità: 3 disponibili
Aggiungi al carrelloCondizione: New. pp. 188.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 81,28
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Chiron Media, Wallingford, Regno Unito
EUR 82,04
Quantità: 10 disponibili
Aggiungi al carrelloPaperback. Condizione: New.
Da: GreatBookPricesUK, Woodford Green, Regno Unito
EUR 93,15
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: As New. Unread book in perfect condition.
EUR 65,25
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Introduction to Algorithms for Data Mining and Machine Learning | Xin-She Yang | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2019 | Academic Press | EAN 9780128172162 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Da: Revaluation Books, Exeter, Regno Unito
EUR 66,49
Quantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 173 pages. 8.75x5.75x0.50 inches. In Stock. This item is printed on demand.
Lingua: Inglese
Editore: Elsevier Science & Technology, Academic Press, 2019
ISBN 10: 0128172169 ISBN 13: 9780128172162
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 65,95
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data. Englisch.
Lingua: Inglese
Editore: Elsevier Science Publishing Co Inc, 2019
ISBN 10: 0128172169 ISBN 13: 9780128172162
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 98,65
Quantità: Più di 20 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 320.
Lingua: Inglese
Editore: Elsevier Science & Technology|Academic Press, 2019
ISBN 10: 0128172169 ISBN 13: 9780128172162
Da: moluna, Greven, Germania
EUR 69,85
Quantità: Più di 20 disponibili
Aggiungi al carrelloKartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approa.
Lingua: Inglese
Editore: Elsevier Science & Technology, Academic Press, 2019
ISBN 10: 0128172169 ISBN 13: 9780128172162
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 74,54
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Introduction to Algorithms for Data Mining and Machine Learning introduces the essential ideas behind all key algorithms and techniques for data mining and machine learning, along with optimization techniques. Its strong formal mathematical approach, well selected examples, and practical software recommendations help readers develop confidence in their data modeling skills so they can process and interpret data for classification, clustering, curve-fitting and predictions. Masterfully balancing theory and practice, it is especially useful for those who need relevant, well explained, but not rigorous (proofs based) background theory and clear guidelines for working with big data.