Condizione: New. pp. 250.
EUR 35,19
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: New. pp. 250 Illus.
EUR 36,76
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: New. pp. 250.
EUR 44,11
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
EUR 88,54
Quantità: 1 disponibili
Aggiungi al carrello
Condizione: New.
Condizione: New.
EUR 95,80
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Knowledge Discovery in Multiple Databases | Shichao Zhang (u. a.) | Taschenbuch | xii | Englisch | 2012 | Springer | EAN 9781447110507 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
EUR 118,64
Quantità: Più di 20 disponibili
Aggiungi al carrelloGebunden. Condizione: New. The only book that covers the emerging topic of multiple database mining Focuses on developing new techniques for multi-database miningUrgent need to analyse data in multi-databases as a great deal of multi-databases are widely used in orga.
EUR 112,77
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au thors who have developed a local pattern analysis, a new strategy for dis covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 160,71
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Like New. Like New. book.
EUR 185,34
Quantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Like New. Like New. book.
EUR 162,93
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Neuware - Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au thors who have developed a local pattern analysis, a new strategy for dis covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining.
Lingua: Inglese
Editore: Springer London, Springer London Okt 2012, 2012
ISBN 10: 1447110501 ISBN 13: 9781447110507
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 106,99
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au thors who have developed a local pattern analysis, a new strategy for dis covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining. 248 pp. Englisch.
Da: moluna, Greven, Germania
EUR 92,27
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The only book that covers the emerging topic of multiple database mining Focuses on developing new techniques for multi-database miningUrgent need to analyse data in multi-databases as a great deal of multi-databases are widely used in orga.
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 134,51
Quantità: Più di 20 disponibili
Aggiungi al carrelloHardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 506.
Lingua: Inglese
Editore: Springer London, Springer London Okt 2012, 2012
ISBN 10: 1447110501 ISBN 13: 9781447110507
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 106,99
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au thors who have developed a local pattern analysis, a new strategy for dis covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch.