Editore: Cambridge University Press 8/5/2021, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
EUR 24,26
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloPaperback or Softback. Condizione: New. Modern Dimension Reduction. Book.
Editore: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 21,89
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Editore: Cambridge University Press, Cambridge, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
EUR 28,53
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Editore: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 25,43
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Cambridge University Press 2021-07-31, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: Chiron Media, Wallingford, Regno Unito
EUR 22,59
Convertire valutaQuantità: 10 disponibili
Aggiungi al carrelloPaperback. Condizione: New.
Editore: Cambridge University Press, Cambridge, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: AussieBookSeller, Truganina, VIC, Australia
EUR 38,69
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Editore: Cambridge University Press, Cambridge, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: CitiRetail, Stevenage, Regno Unito
EUR 30,22
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Editore: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 33,40
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace.
Editore: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: Revaluation Books, Exeter, Regno Unito
EUR 20,79
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 75 pages. 9.02x5.98x0.20 inches. In Stock. This item is printed on demand.
Editore: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 25,66
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 160.
Editore: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: moluna, Greven, Germania
EUR 29,40
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dimension reduction offers researchers and scholars the ability to make complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques to efficiently represent the.
Editore: Cambridge University Press, 2021
ISBN 10: 1108986897 ISBN 13: 9781108986892
Lingua: Inglese
Da: preigu, Osnabrück, Germania
EUR 39,35
Convertire valutaQuantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Modern Dimension Reduction | Philip D. Waggoner | Taschenbuch | Kartoniert / Broschiert | Englisch | 2021 | Cambridge University Press | EAN 9781108986892 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.