Da: California Books, Miami, FL, U.S.A.
EUR 54,33
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Condizione: New. 1st ed. 2023 edition NO-PA16APR2015-KAP.
EUR 49,53
Quantità: 10 disponibili
Aggiungi al carrelloPF. Condizione: New.
Condizione: New. pp. 144.
Lingua: Inglese
Editore: Springer-Nature New York Inc, 2023
ISBN 10: 3031190696 ISBN 13: 9783031190698
Da: Revaluation Books, Exeter, Regno Unito
EUR 69,13
Quantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 140 pages. 9.45x6.61x0.33 inches. In Stock.
Lingua: Inglese
Editore: Springer International Publishing, Springer Nature Switzerland Nov 2023, 2023
ISBN 10: 3031190696 ISBN 13: 9783031190698
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 48,14
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neuware -This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 144 pp. Englisch.
Lingua: Inglese
Editore: Springer International Publishing, Springer Nature Switzerland Nov 2022, 2022
ISBN 10: 3031190661 ISBN 13: 9783031190667
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 48,14
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Neuware -This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 144 pp. Englisch.
Lingua: Inglese
Editore: Springer International Publishing, Springer Nature Switzerland, 2023
ISBN 10: 3031190696 ISBN 13: 9783031190698
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 48,14
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
Lingua: Inglese
Editore: Springer International Publishing, Springer Nature Switzerland, 2022
ISBN 10: 3031190661 ISBN 13: 9783031190667
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 48,14
Quantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
EUR 44,75
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Optimization Algorithms for Distributed Machine Learning | Gauri Joshi | Taschenbuch | xiii | Englisch | 2023 | Springer | EAN 9783031190698 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
EUR 31,32
Quantità: 5 disponibili
Aggiungi al carrelloCondizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
Da: PBShop.store US, Wood Dale, IL, U.S.A.
EUR 55,47
Quantità: Più di 20 disponibili
Aggiungi al carrelloPAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
EUR 53,28
Quantità: Più di 20 disponibili
Aggiungi al carrelloPAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Da: Majestic Books, Hounslow, Regno Unito
EUR 54,03
Quantità: 1 disponibili
Aggiungi al carrelloCondizione: New. This item is printed on demand.
Lingua: Inglese
Editore: Springer International Publishing, Springer Nature Switzerland Nov 2023, 2023
ISBN 10: 3031190696 ISBN 13: 9783031190698
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 48,14
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime. 144 pp. Englisch.
Lingua: Inglese
Editore: Springer International Publishing, Springer Nature Switzerland Nov 2022, 2022
ISBN 10: 3031190661 ISBN 13: 9783031190667
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 48,14
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime. 144 pp. Englisch.
Da: Majestic Books, Hounslow, Regno Unito
EUR 67,63
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 144.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 66,51
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 69,88
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 144.
Lingua: Inglese
Editore: Springer, Berlin|Springer International Publishing|Springer, 2023
ISBN 10: 3031190696 ISBN 13: 9783031190698
Da: moluna, Greven, Germania
EUR 42,96
Quantità: Più di 20 disponibili
Aggiungi al carrelloKartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where th.
Da: preigu, Osnabrück, Germania
EUR 44,75
Quantità: 5 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Optimization Algorithms for Distributed Machine Learning | Gauri Joshi | Buch | xiii | Englisch | 2022 | Springer | EAN 9783031190667 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.