Editore: Cambridge University Press, Cambridge, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, the authors focus on the inference methods rooted in statistical physics and information theory. The discussion is organized according to the different scales of the reconstruction task, that is, whether the goal is to reconstruct the macroscopic structure of the network, to infer its mesoscale properties, or to predict the individual microscopic connections. This Element provides an overview of the ideas, methods and techniques to deal with the problem of missing information in complex networks datasets. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Editore: Cambridge University Press, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New.
Editore: Cambridge University Press, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 24,41
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Cambridge University Press, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP.
Editore: Cambridge University Press 2021-09-09, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: Chiron Media, Wallingford, Regno Unito
EUR 22,30
Quantità: 10 disponibili
Aggiungi al carrelloPaperback. Condizione: New.
Editore: Cambridge University Press, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: Revaluation Books, Exeter, Regno Unito
EUR 20,50
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. 75 pages. 9.02x5.98x0.24 inches. In Stock. This item is printed on demand.
Editore: Cambridge University Press, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
EUR 25,11
Quantità: Più di 20 disponibili
Aggiungi al carrelloPaperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Editore: Cambridge University Press, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: Majestic Books, Hounslow, Regno Unito
EUR 35,49
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand.
Editore: Cambridge University Press, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 36,65
Quantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND.
Editore: Cambridge University Press, Cambridge, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: CitiRetail, Stevenage, Regno Unito
EUR 30,96
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, the authors focus on the inference methods rooted in statistical physics and information theory. The discussion is organized according to the different scales of the reconstruction task, that is, whether the goal is to reconstruct the macroscopic structure of the network, to infer its mesoscale properties, or to predict the individual microscopic connections. This Element provides an overview of the ideas, methods and techniques to deal with the problem of missing information in complex networks datasets. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Editore: Cambridge University Press, Cambridge, 2021
ISBN 10: 110872681X ISBN 13: 9781108726818
Lingua: Inglese
Da: AussieBookSeller, Truganina, VIC, Australia
EUR 41,44
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: new. Paperback. Complex networks datasets often come with the problem of missing information: interactions data that have not been measured or discovered, may be affected by errors, or are simply hidden because of privacy issues. This Element provides an overview of the ideas, methods and techniques to deal with this problem and that together define the field of network reconstruction. Given the extent of the subject, the authors focus on the inference methods rooted in statistical physics and information theory. The discussion is organized according to the different scales of the reconstruction task, that is, whether the goal is to reconstruct the macroscopic structure of the network, to infer its mesoscale properties, or to predict the individual microscopic connections. This Element provides an overview of the ideas, methods and techniques to deal with the problem of missing information in complex networks datasets. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Da: moluna, Greven, Germania
EUR 29,40
Quantità: Più di 20 disponibili
Aggiungi al carrelloKartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This Element provides an overview of the ideas, methods and techniques to deal with the problem of missing information in complex networks datasets.Inhaltsverzeichnis1. Introduction 2. Network reconstruction at the macroscale 3. Ne.