Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 59,68
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Birkhäuser Boston, Birkhäuser Boston Dez 2003, 2003
ISBN 10: 0817641467 ISBN 13: 9780817641467
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 53,49
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Neuware -common feature is that these evolution problems can be formulated as asymptoti cally small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolu tion PDEs, in its abstract formulation it deals with a nonautonomous abstract differ ential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ~ ° as t ~ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2\* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 400 pp. Englisch.
Da: preigu, Osnabrück, Germania
EUR 50,35
Quantità: 5 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. A Stability Technique for Evolution Partial Differential Equations | A Dynamical Systems Approach | Juan Luis Vázquez (u. a.) | Taschenbuch | xxi | Englisch | 2012 | Birkhäuser | EAN 9781461273967 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Editore: Birkhäuser Boston, Birkhäuser Boston, 2012
ISBN 10: 146127396X ISBN 13: 9781461273967
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 59,97
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - common feature is that these evolution problems can be formulated as asymptoti cally small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolu tion PDEs, in its abstract formulation it deals with a nonautonomous abstract differ ential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ~ ° as t ~ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2\* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object.
Editore: Birkhäuser Boston, Birkhäuser Boston, 2003
ISBN 10: 0817641467 ISBN 13: 9780817641467
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 59,27
Quantità: 1 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - common feature is that these evolution problems can be formulated as asymptoti cally small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolu tion PDEs, in its abstract formulation it deals with a nonautonomous abstract differ ential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ~ ° as t ~ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2\* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 101,01
Quantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Like New. Like New. book.
Editore: Birkhäuser Boston Feb 2012, 2012
ISBN 10: 146127396X ISBN 13: 9781461273967
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 53,49
Quantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -\* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations.\* Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs.\* Well-organized text with detailed index and bibliography, suitable as a course text or reference volume. 400 pp. Englisch.
Editore: Birkhäuser Boston Dez 2003, 2003
ISBN 10: 0817641467 ISBN 13: 9780817641467
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 53,49
Quantità: 2 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -\* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations.\* Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs.\* Well-organized text with detailed index and bibliography, suitable as a course text or reference volume. 400 pp. Englisch.
Da: moluna, Greven, Germania
EUR 48,37
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equationsWritten by established mathematicians at the forefront of their field, this blend of delicate analysis and broad .
Da: moluna, Greven, Germania
EUR 48,37
Quantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equationsWritten by established mathematicians at the forefront of their field, this blend of delicate analysis and broad .
Editore: Birkhäuser Boston, Birkhäuser Boston Feb 2012, 2012
ISBN 10: 146127396X ISBN 13: 9781461273967
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 53,49
Quantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -common feature is that these evolution problems can be formulated as asymptoti cally small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolu tion PDEs, in its abstract formulation it deals with a nonautonomous abstract differ ential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ~ ° as t ~ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2\* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 400 pp. Englisch.
Da: preigu, Osnabrück, Germania
EUR 50,35
Quantità: 5 disponibili
Aggiungi al carrelloBuch. Condizione: Neu. A Stability Technique for Evolution Partial Differential Equations | A Dynamical Systems Approach | Juan Luis Vázquez (u. a.) | Buch | xxi | Englisch | 2003 | Birkhäuser Boston | EAN 9780817641467 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.