Editore: Springer Nature Switzerland AG, CH, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Lingua: Inglese
Da: Rarewaves.com UK, London, Regno Unito
EUR 31,34
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloPaperback. Condizione: New. 2019 ed. This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.
Editore: Springer Nature Switzerland AG, CH, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Lingua: Inglese
Da: Rarewaves.com USA, London, LONDO, Regno Unito
EUR 34,58
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloPaperback. Condizione: New. 2019 ed. This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 29,34
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Da: Chiron Media, Wallingford, Regno Unito
EUR 25,13
Convertire valutaQuantità: 10 disponibili
Aggiungi al carrelloPaperback. Condizione: New.
Da: Best Price, Torrance, CA, U.S.A.
EUR 48,24
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Da: Books Puddle, New York, NY, U.S.A.
EUR 75,07
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. pp. 104.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 51,90
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Majestic Books, Hounslow, Regno Unito
EUR 76,56
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 104.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 79,12
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 104.