Editore: Springer-Verlag 1972, New York, 1972
Da: Brattle Book Shop [ABAA, ILAB], Boston, MA, U.S.A.
EUR 43,85
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Good. Hardcover. 9.5"x6.5" viii, 231pp. Yellow cloth over boards, black text onfront and spine. DJ is tan with black text. Binding has slight bumping toedges, DJ is slightly worn with bumping on edge, still Good. ISBN:0387056998.
EUR 65,00
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloHardcover. Condizione: Sehr gut. Berlin, Springer 1972. X, 232 p. OCloth. with dust jacket. Grundlehren der Mathematischen Wissenschaften, 194.- Slightly stained, otherwise in very good condition.
Da: Best Price, Torrance, CA, U.S.A.
EUR 113,33
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloCondizione: New. SUPER FAST SHIPPING.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
EUR 120,25
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
Da: Ria Christie Collections, Uxbridge, Regno Unito
EUR 127,54
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New. In.
Editore: Springer Berlin Heidelberg, 2011
ISBN 10: 3642653170 ISBN 13: 9783642653179
Lingua: Inglese
Da: moluna, Greven, Germania
EUR 109,83
Convertire valutaQuantità: Più di 20 disponibili
Aggiungi al carrelloCondizione: New.
EUR 169,41
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. pp. 252.
Editore: Springer Berlin Heidelberg, Springer Berlin Heidelberg Nov 2011, 2011
ISBN 10: 3642653170 ISBN 13: 9783642653179
Lingua: Inglese
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
EUR 128,39
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Neuware -The theory of theta functions has a long history; for this, we refer A. Krazer and W. Wirtinger the reader to an encyclopedia article by ('Sources' [9]). We shall restrict ourselves to postwar, i. e. , after 1945, periods. Around 1948/49, F. Conforto, c. L. Siegel, A. Well reconsidered the main existence theorems of theta functions and found natural proofs for them. These are contained in Conforto: Abelsche Funktionen und algebraische Geometrie, Springer (1956); Siegel: Analytic functions of several complex variables, Lect. Notes, I. A. S. (1948/49); Well: Theoremes fondamentaux de la theorie des fonctions theta, Sem. Bourbaki, No. 16 (1949). The complete account of Weil's method appeared in his book of 1958 [20]. The next important achievement was the theory of compacti fication of the quotient variety of Siegel's upper-half space by a modular group. There are many ways to compactify the quotient variety; we are talking about what might be called a standard compactification. Such a compactification was obtained first as a Hausdorff space by I. Satake in 'On the compactification of the Siegel space', J. Ind. Math. Soc. 20, 259-281 (1956), and as a normal projective variety by W. L. Baily in 1958 [1]. In 1957/58, H. Cartan took up this theory in his seminar [3]; it was shown that the graded ring of modular forms relative to the given modular group is a normal integral domain which is finitely generated over C.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 252 pp. Englisch.
Editore: Springer Berlin Heidelberg, 2011
ISBN 10: 3642653170 ISBN 13: 9783642653179
Lingua: Inglese
Da: AHA-BUCH GmbH, Einbeck, Germania
EUR 128,39
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The theory of theta functions has a long history; for this, we refer A. Krazer and W. Wirtinger the reader to an encyclopedia article by ('Sources' [9]). We shall restrict ourselves to postwar, i. e. , after 1945, periods. Around 1948/49, F. Conforto, c. L. Siegel, A. Well reconsidered the main existence theorems of theta functions and found natural proofs for them. These are contained in Conforto: Abelsche Funktionen und algebraische Geometrie, Springer (1956); Siegel: Analytic functions of several complex variables, Lect. Notes, I. A. S. (1948/49); Well: Theoremes fondamentaux de la theorie des fonctions theta, Sem. Bourbaki, No. 16 (1949). The complete account of Weil's method appeared in his book of 1958 [20]. The next important achievement was the theory of compacti fication of the quotient variety of Siegel's upper-half space by a modular group. There are many ways to compactify the quotient variety; we are talking about what might be called a standard compactification. Such a compactification was obtained first as a Hausdorff space by I. Satake in 'On the compactification of the Siegel space', J. Ind. Math. Soc. 20, 259-281 (1956), and as a normal projective variety by W. L. Baily in 1958 [1]. In 1957/58, H. Cartan took up this theory in his seminar [3]; it was shown that the graded ring of modular forms relative to the given modular group is a normal integral domain which is finitely generated over C.
EUR 175,37
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloPaperback. Condizione: Brand New. reprint edition. 232 pages. 9.25x6.25x0.50 inches. In Stock.
Da: Mispah books, Redhill, SURRE, Regno Unito
EUR 193,64
Convertire valutaQuantità: 1 disponibili
Aggiungi al carrelloPaperback. Condizione: Like New. Like New. book.
Editore: Springer Berlin Heidelberg Nov 2011, 2011
ISBN 10: 3642653170 ISBN 13: 9783642653179
Lingua: Inglese
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
EUR 128,39
Convertire valutaQuantità: 2 disponibili
Aggiungi al carrelloTaschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The theory of theta functions has a long history; for this, we refer A. Krazer and W. Wirtinger the reader to an encyclopedia article by ('Sources' [9]). We shall restrict ourselves to postwar, i. e. , after 1945, periods. Around 1948/49, F. Conforto, c. L. Siegel, A. Well reconsidered the main existence theorems of theta functions and found natural proofs for them. These are contained in Conforto: Abelsche Funktionen und algebraische Geometrie, Springer (1956); Siegel: Analytic functions of several complex variables, Lect. Notes, I. A. S. (1948/49); Well: Theoremes fondamentaux de la theorie des fonctions theta, Sem. Bourbaki, No. 16 (1949). The complete account of Weil's method appeared in his book of 1958 [20]. The next important achievement was the theory of compacti fication of the quotient variety of Siegel's upper-half space by a modular group. There are many ways to compactify the quotient variety; we are talking about what might be called a standard compactification. Such a compactification was obtained first as a Hausdorff space by I. Satake in 'On the compactification of the Siegel space', J. Ind. Math. Soc. 20, 259-281 (1956), and as a normal projective variety by W. L. Baily in 1958 [1]. In 1957/58, H. Cartan took up this theory in his seminar [3]; it was shown that the graded ring of modular forms relative to the given modular group is a normal integral domain which is finitely generated over C. 252 pp. Englisch.
Da: Majestic Books, Hounslow, Regno Unito
EUR 177,65
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. Print on Demand pp. 252 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Da: Biblios, Frankfurt am main, HESSE, Germania
EUR 182,90
Convertire valutaQuantità: 4 disponibili
Aggiungi al carrelloCondizione: New. PRINT ON DEMAND pp. 252.