High-Order Models in Semantic Image Segmentation - Rilegato

Ben Ayed

 
9780128053201: High-Order Models in Semantic Image Segmentation

Sinossi

High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. The book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is ideal for academics, industry researchers, and graduate students in computer vision, machine learning and medical imaging.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Ismail Ben Ayed received a Ph.D. degree (with the highest honor) in the area of computer vision from the National Institute of Scientific Research (INRS-EMT), University of Quebec, Montreal, QC, Canada, in May 2007, under the guidance of Professor Amar Mitiche. Since then, he has been a research scientist with GE Healthcare, London, ON, Canada, conducting research in medical image analysis. He also holds an Adjunct Professor appointment at Western University, department of Medical Biophysics. He co-authored a book, over 50 peer-reviewed papers in reputable journals and conferences, and six patents. He received a GE recognition award in 2012 and a GE innovation award in 2010

Ismail Ben Ayed is an image segmentation and optimization expert who has authored over 60 peer-reviewed articles in the field and has co-authored the book Variational and Level Set Methods in Image Segmentation, 2011, which is receiving a high citation rate.

Dalla quarta di copertina

High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. This book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is ideal for academics, industry researchers, and graduate students in computer vision, machine learning and medical imaging

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.