Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues.
This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem).
The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification.
Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Abstract. Preface. Acknowledgments. List of Figures. List of Tables. Abbreviations and Symbols. Introduction. Part I: Independent Component Analysis: Theory. 1. Basics. 2. Independent Component Analysis. 3. A Unifying Information-Theoretic Framework for ICA. 4. Blind Separation of Time-Delayed and Convolved Sources. 5. ICA Using Overcomplete Representations. 6. First Steps towards Nonlinear ICA. Part II: Independent Component Analysis: Applications. 7. Biomedical Applications of ICA. 8. ICA for Feature Extraction. 9. Unsupervised Classification with ICA Mixture Models. 10. Conclusions and Future Research. Bibliography. About the Author. Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 30,03 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 25,78 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Keeps Books, Wilmington, IL, U.S.A.
hardcover. Condizione: Very Good. Cover has light wear. Unmarked, pages clean & bright. Ships Next Business Day. Codice articolo 240901058
Quantità: 1 disponibili
Da: Starselling, Maple Grove, MN, U.S.A.
Condizione: Good. Cover is very nice and clean. Cover has normal wear and tear. Pages are very nice and clean. All books ship within 24 hours Monday - Friday. Secure bubble mailer. Fast shipping from Minnesota. Codice articolo 1BFL5I000YIY
Quantità: 1 disponibili
Da: Toscana Books, AUSTIN, TX, U.S.A.
Hardcover. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Codice articolo Scanned0792382617
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention be. Codice articolo 5970785
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues. This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem). The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification. Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA. 248 pp. Englisch. Codice articolo 9780792382614
Quantità: 2 disponibili
Da: Libro Co. Italia Srl, San Casciano Val di Pesa, FI, Italia
Brossura. Condizione: fine. Dordrecht, 1998; pp. 210. Libro. Codice articolo 1660348
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues.This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem).The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification.Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch. Codice articolo 9780792382614
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792382614_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues. This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem). The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification. Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA. Codice articolo 9780792382614
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190185141
Quantità: Più di 20 disponibili