Articoli correlati a Independent Component Analysis: Theory and Applications

Independent Component Analysis: Theory and Applications - Rilegato

 
9780792382614: Independent Component Analysis: Theory and Applications

Sinossi

Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues.
This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem).
The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification.
Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Abstract. Preface. Acknowledgments. List of Figures. List of Tables. Abbreviations and Symbols. Introduction. Part I: Independent Component Analysis: Theory. 1. Basics. 2. Independent Component Analysis. 3. A Unifying Information-Theoretic Framework for ICA. 4. Blind Separation of Time-Delayed and Convolved Sources. 5. ICA Using Overcomplete Representations. 6. First Steps towards Nonlinear ICA. Part II: Independent Component Analysis: Applications. 7. Biomedical Applications of ICA. 8. ICA for Feature Extraction. 9. Unsupervised Classification with ICA Mixture Models. 10. Conclusions and Future Research. Bibliography. About the Author. Index.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: molto buono
Cover has light wear. Unmarked,...
Visualizza questo articolo

EUR 30,03 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 25,78 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781441950567: Independent Component Analysis: Theory and Applications

Edizione in evidenza

ISBN 10:  1441950567 ISBN 13:  9781441950567
Casa editrice: Springer, 2010
Brossura

Risultati della ricerca per Independent Component Analysis: Theory and Applications

Foto dell'editore

Te-Won Lee
Editore: Springer, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Antico o usato Rilegato

Da: Keeps Books, Wilmington, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

hardcover. Condizione: Very Good. Cover has light wear. Unmarked, pages clean & bright. Ships Next Business Day. Codice articolo 240901058

Contatta il venditore

Compra usato

EUR 11,44
Convertire valuta
Spese di spedizione: EUR 30,03
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Te-Won Lee
Editore: Springer, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Antico o usato Rilegato

Da: Starselling, Maple Grove, MN, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. Cover is very nice and clean. Cover has normal wear and tear. Pages are very nice and clean. All books ship within 24 hours Monday - Friday. Secure bubble mailer. Fast shipping from Minnesota. Codice articolo 1BFL5I000YIY

Contatta il venditore

Compra usato

EUR 12,25
Convertire valuta
Spese di spedizione: EUR 92,80
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Te-Won Lee
Editore: Springer, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuovo Rilegato

Da: Toscana Books, AUSTIN, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Codice articolo Scanned0792382617

Contatta il venditore

Compra nuovo

EUR 116,65
Convertire valuta
Spese di spedizione: EUR 25,78
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Te-Won Lee
Editore: Springer US, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention be. Codice articolo 5970785

Contatta il venditore

Compra nuovo

EUR 136,16
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Te-Won Lee
Editore: Springer US Okt 1998, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues. This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem). The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification. Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA. 248 pp. Englisch. Codice articolo 9780792382614

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lee, Te-Won
ISBN 10: 0792382617 ISBN 13: 9780792382614
Antico o usato Brossura

Da: Libro Co. Italia Srl, San Casciano Val di Pesa, FI, Italia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Brossura. Condizione: fine. Dordrecht, 1998; pp. 210. Libro. Codice articolo 1660348

Contatta il venditore

Compra usato

EUR 167,95
Convertire valuta
Spese di spedizione: EUR 7,00
In Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Te-Won Lee
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues.This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem).The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification.Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch. Codice articolo 9780792382614

Contatta il venditore

Compra nuovo

EUR 160,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Te-Won Lee
Editore: Springer, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9780792382614_new

Contatta il venditore

Compra nuovo

EUR 166,07
Convertire valuta
Spese di spedizione: EUR 10,41
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Te-Won Lee
Editore: Springer US, Springer US, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Independent Component Analysis (ICA) is a signal-processing method to extract independent sources given only observed data that are mixtures of the unknown sources. Recently, blind source separation by ICA has received considerable attention because of its potential signal-processing applications such as speech enhancement systems, telecommunications, medical signal-processing and several data mining issues. This book presents theories and applications of ICA and includes invaluable examples of several real-world applications. Based on theories in probabilistic models, information theory and artificial neural networks, several unsupervised learning algorithms are presented that can perform ICA. The seemingly different theories such as infomax, maximum likelihood estimation, negentropy maximization, nonlinear PCA, Bussgang algorithm and cumulant-based methods are reviewed and put in an information theoretic framework to unify several lines of ICA research. An algorithm is presented that is able to blindly separate mixed signals with sub- and super-Gaussian source distributions. The learning algorithms can be extended to filter systems, which allows the separation of voices recorded in a real environment (cocktail party problem). The ICA algorithm has been successfully applied to many biomedical signal-processing problems such as the analysis of electroencephalographic data and functional magnetic resonance imaging data. ICA applied to images results in independent image components that can be used as features in pattern classification problems such as visual lip-reading and face recognition systems. The ICA algorithm can furthermore be embedded in an expectation maximization framework for unsupervised classification. Independent Component Analysis: Theory and Applications is the first book to successfully address this fairly new and generally applicable method of blind source separation. It is essential reading for researchers and practitioners with an interest in ICA. Codice articolo 9780792382614

Contatta il venditore

Compra nuovo

EUR 168,73
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Te-Won Lee
Editore: Springer, 1998
ISBN 10: 0792382617 ISBN 13: 9780792382614
Nuovo Rilegato

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Feb2416190185141

Contatta il venditore

Compra nuovo

EUR 157,99
Convertire valuta
Spese di spedizione: EUR 64,44
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro