Articoli correlati a Multistrategy Learning: A Special Issue of MACHINE...

Multistrategy Learning: A Special Issue of MACHINE LEARNING: 240 - Rilegato

 
9780792393740: Multistrategy Learning: A Special Issue of MACHINE LEARNING: 240

Sinossi

Most machine learning research has been concerned with the development of systems that implement one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if the learning problems they are applied to are sufficiently narrowly defined.
Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems that integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community.
Multistrategy Learning contains contributions characteristic of the current research in this area. It is an edited volume of original research comprising invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 11, Nos. 2/3).

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Introduction; R.S. Michalski. Inferential Theory of Learning as a Conceptual Basis for Multistrategy Learning; R.S. Michalski. Multistrategy Learning and Theory Revision; L. Saitta, M. Botta, F. Neri. Learning Causal Patterns: Making a Transition from Data-Driven to Theory-Driven Learning; M. Pazzani. Using Knowledge-Based Neural Networks to Improve Algorithms: refining the Chou--Fasman Algorithm for Protein Folding; R. Maclin, J.W. Shavlik. Balanced Cooperative Modeling; K. Morik. Plausible Justification Trees: a Framework for Deep and Dynamic Integration of Learning Strategies; G. Tecuci. Index.

Product Description

Book by None

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781461364054: Multistrategy Learning: A Special Issue of MACHINE LEARNING: 240

Edizione in evidenza

ISBN 10:  1461364051 ISBN 13:  9781461364054
Casa editrice: Springer, 2012
Brossura

Risultati della ricerca per Multistrategy Learning: A Special Issue of MACHINE...

Immagini fornite dal venditore

Michalski, Ryszard S.
Editore: Springer US, 1993
ISBN 10: 0792393740 ISBN 13: 9780792393740
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for. Codice articolo 458443563

Contatta il venditore

Compra nuovo

EUR 227,74
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Michalski, Ryszard S.
Editore: Springer, 1993
ISBN 10: 0792393740 ISBN 13: 9780792393740
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9780792393740_new

Contatta il venditore

Compra nuovo

EUR 227,19
Convertire valuta
Spese di spedizione: EUR 10,37
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Michalski, Ryszard S.
Editore: Springer, 1993
ISBN 10: 0792393740 ISBN 13: 9780792393740
Nuovo Rilegato

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Feb2416190185861

Contatta il venditore

Compra nuovo

EUR 202,26
Convertire valuta
Spese di spedizione: EUR 63,97
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Ryszard S Michalski
Editore: Springer Us Jun 1993, 1993
ISBN 10: 0792393740 ISBN 13: 9780792393740
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware - Most machine learning research has been concerned with the development of systems that implememnt one type of inference within a single representational paradigm. Such systems, which can be called monostrategy learning systems, include those for empirical induction of decision trees or rules, explanation-based generalization, neural net learning from examples, genetic algorithm-based learning, and others. Monostrategy learning systems can be very effective and useful if learning problems to which they are applied are sufficiently narrowly defined. Many real-world applications, however, pose learning problems that go beyond the capability of monostrategy learning methods. In view of this, recent years have witnessed a growing interest in developing multistrategy systems, which integrate two or more inference types and/or paradigms within one learning system. Such multistrategy systems take advantage of the complementarity of different inference types or representational mechanisms. Therefore, they have a potential to be more versatile and more powerful than monostrategy systems. On the other hand, due to their greater complexity, their development is significantly more difficult and represents a new great challenge to the machine learning community. Multistrategy Learning contains contributions characteristic of the current research in this area. Codice articolo 9780792393740

Contatta il venditore

Compra nuovo

EUR 318,78
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello