Random Matrix Methods for Machine Learning - Rilegato

Couillet, Romain; Liao, Zhenyu

 
9781009123235: Random Matrix Methods for Machine Learning

Sinossi

This unified random matrix approach to large-dimensional machine learning covers applications from power detection to deep neural networks.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sugli autori

Romain Couillet is a Full Professor at Grenoble-Alpes University, France. Prior to that, he was a Full Professor at CentraleSupélec, University of Paris-Saclay. His research topics are in random matrix theory applied to statistics, machine learning, and signal processing. He is the recipient of the 2021 IEEE/SEE Glavieux prize, of the 2013 CNRS Bronze Medal, and of the 2013 IEEE ComSoc Outstanding Young Researcher Award.

Zhenyu Liao is an Associated Professor with Huazhong University of Science and Technology (HUST), China. He is the recipient of the 2021 East Lake Youth Talent Program Fellowship of HUST, the 2019 ED STIC Ph.D. Student Award, and the 2016 Supélec Foundation Ph.D. Fellowship of University of Paris-Saclay, France.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.