Articoli correlati a Finite Element Methods and Navier-Stokes Equations...

Finite Element Methods and Navier-Stokes Equations (Mathematics and Its Applications): 22 - Brossura

 
9781402003097: Finite Element Methods and Navier-Stokes Equations (Mathematics and Its Applications): 22

Sinossi

In present-day technology the engineer is faced with complicated problems which can be solved only by advanced numerical methods using digital computers. He should have mathematical models at his disposal in order to simulate the behavior of physical systems. In many cases, including problems in physics, mechanics, chemistry, biology, civil engineering, electrodynamics, solid mechanics, space engineering, petroleum engineering, weather-forecasting, mass transport, multiphase flow and, last but not least, hydrodynamics, such a physical system can be described mathematically by one or more partial differential equations. Some of these problems require extreme accuracy, while for other problems only the qualitative behavior of the solution need to be studied. The finite element method (FEM) is one of the most commonly used methods for solving partial differential equations (PDEs). It makes use of the computer and is very general in the sense that it can be applied to both steady-state and transient, linear and nonlinear problems in geometries of arbitrary space dimension. The FEM is in fact a method which transforms a PDE into a system of linear (algebraic) equations. The following aspects may be identified in the study of a physical phenomenon: (i) engineering-mathematical sciences to formulate the problem correctly in terms of PDEs (ii) numerical methods to construct and to solve the system of algebraic equations; applied numerical functional analysis to give error estimates and convergence proofs (iii) informatics and programming to perform the calculations efficiently on the computer.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

I Introduction to the Finite Element Method.- 1 Examples of partial differential equations.- 1.1 Classification of PDEs.- 1.2 Laplace and Poisson equation.- 1.3 Steady state convection-diffusion equation.- 1.4 Time dependent convection-diffusion equation.- 1.5 Reynolds equation.- 1.6 Equations of fluid dynamics; Navier-Stokes equations.- 1.7 Equations of linear elasticity.- 1.8 Comments.- 2 Finite difference schemes for Poisson equation and convection-diffusion equation.- 2.1 1D Poisson equation with Dirichlet boundary conditions.- 2.2 1D Poisson equation with other type of boundary conditions.- 2.2.1 Mixed homogeneous Dirichlet-Neumann boundary conditions.- 2.2.2 Non-homogeneous Dirichlet boundary conditions.- 2.2.3 Non-homogeneous Neumann boundary conditions.- 2.2.4 Non-homogeneous Robbins boundary conditions.- 2.3 2D Poisson equation with Dirichlet boundary conditions.- 2.4 Boundary conditions, geometry and variable coefficients in 2D.- 2.4.1 Boundary conditions.- 2.4.2 Geometry.- 2.4.3 Variable coefficients.- 2.5 Comments.- 2.6 Convection-diffusion equation.- 3 The finite element method.- 3.1 Extremal problem; Euler-Lagrange equation.- 3.2 Extremal formulation of the Poisson equation.- 3.2.1 1D case.- 3.2.2 2D case.- 3.2.3 Various types of boundary conditions.- 3.3 Comments.- 3.4 The Ritz method.- 3.5 The FEM.- 3.5.1 Definition.- 3.5.2 1D Poisson equation.- 3.6 The Galerkin method.- 3.6.1 General procedure.- 3.6.2 1D Poisson equation; homogeneous boundary conditions.- 3.6.3 1D Poisson equation; non-homogeneous boundary conditions.- 3.6.4 2D problem.- 3.7 Comments.- 4 Construction of finite elements.- 4.1 Linear, quadratic and cubic basis functions in 1D.- 4.2 Triangular basis functions in 2D.- 4.2.1 Barycentric coordinates.- 4.2.2 Linear finite element.- 4.2.3 Linear finite element (with reduced continuity).- 4.2.4 Quadratic finite element.- 4.2.5 Extended quadratic finite element.- 4.3 Triangular basis functions in 3D.- 4.3.1 Barycentric coordinates.- 4.3.2 Linear finite element.- 4.3.3 Linear finite element (with reduced continuity).- 4.4 Coordinate and element transformation.- 4.5 Quadrilateral finite element.- 4.5.1 Bilinear finite element.- 4.5.2 Biquadratic finite element.- 4.6 Hexahedral finite elements.- 4.6.1 Trilinear finite element.- 4.6.2 Triquadratic finite element.- 5 Practical aspects of the finite element method.- 5.1 Finite element assembly algorithm.- 5.2 1D Poisson equation; quadratic finite elements.- 5.3 2D Poisson equation; linear and quadratic triangular elements.- 5.3.1 Linear finite element.- 5.3.2 Quadratic finite element.- 5.4 Numerical integration formulas.- 5.4.1 Numerical integration on intervals, triangles and tetrahedra.- 5.4.2 Numerical integration on quadrilaterals and hexahedra.- 5.5 Accuracy aspects of the FEM.- 5.6 Solution methods for systems of (non-)linear equations.- 5.6.1 Direct methods to solve systems of linear equations.- 5.6.2 Iterative methods for the solution of systems of linear equations.- 5.6.3 Linearization techniques for systems of nonlinear equations.- 5.6.3.1 Picard iteration.- 5.6.3.2 Newton’s method.- 5.6.3.3 The quasi-Newton method.- II Application of the Finite Element Method to the Navier-Stokes Equations.- 6 Alternative formulations of Navier-Stokes equations.- 6.1 The basic equations of fluid dynamics.- 6.2 Alternative formulations.- 6.3 Initial and boundary conditions.- 6.3.1 Introduction.- 6.3.2 Velocity-pressure formulation.- 6.3.3 Stream function-vorticity formulation.- 6.3.4 Some practical remarks concerning the boundary conditions.- 6.4 Evaluation of the various formulations.- 7 The integrated method.- 7.1 General approach.- 7.2 Practical elaboration.- 7.2.1 Complicated boundary conditions.- 7.2.2 Necessary conditions for the elements.- 7.2.3 Examples of admissible elements.- 7.2.3.1 Introduction.- 7.2.3.2 Triangular elements (Taylor-Hood (1973)).- 7.2.3.3 Triangular elements (Crouzeix-Raviart (1973)).- 7.2.3.4 Quadrilateral elements.- 7.2.3.5 3D elements.- 7.2.4 The structure of the equations.- 7.3 The Navier-Stokes equations.- 7.3.1 Introduction.- 7.3.2 The Picard iteration.- 7.3.3 Newton and quasi-Newton methods.- 7.3.4 The structure of the system of equations.- 7.4 Evaluation of the integrated method.- 8 The penalty function method.- 8.1 General approach.- 8.2 Alternative formulations of the penalty function method.- 8.2.1 Minimization formulation.- 8.2.2 The continuous penalty function method.- 8.2.3 Iterative penalty function method.- 8.3 Practical consequences.- 8.3.1 Element conditions.- 8.3.2 The modified P2+-P1 Crouzeix-Raviart element.- 8.3.2.1 Introduction.- 8.3.2.2 Elimination of the velocities in the centroid.- 8.3.2.3 Elimination of the pressure derivatives.- 8.3.2.4 Construction of matrices.- 8.3.2.5 Concluding remarks.- 8.3.3 The structure of the equations.- 8.4 Evaluation of the penalty function method.- 9 Divergence-free elements.- 9.1 General approach.- 9.2 The construction of divergence-free basis functions for 2D elements.- 9.2.1 Introduction.- 9.2.2 The non-conforming Crouzeix-Raviart element.- 9.2.3 The modified P2+-P1 Crouzeix-Raviart element.- 9.2.4 The Q2-P1 9-node quadrilateral.- 9.2.5 Boundary conditions.- 9.2.6 The structure of the system of equations.- 9.2.7 The implementation of boundary conditions of the type ? equals unknown constant.- 9.3 The construction of divergence-free basis functions for 3D elements.- 9.3.1 Introduction.- 9.3.2 A non-conforming Crouzeix-Raviart element in IR3.- 9.3.3 The construction of a divergence-free basis.- 9.4 Evaluation of the solenoidal method.- 10 The instationary Navier-Stokes equations.- 10.1 General approach.- 10.2 The numerical solution of systems of ordinary differential equations.- 10.2.1 Introduction.- 10.2.2 Stability of the ?-method.- 10.3 The solution of the systems of ordinary differential equations resulting from the Galerkin method applied to the Navier-Stokes equations.- 10.3.1 The penalty function method and artificial compressibility methods.- 10.3.2 Divergence-free elements.- 10.3.3 The pressure-correction method.- 10.4 Streamline upwinding.- III Theoretical Aspects of the Finite Element Method.- 11 Second order elliptic PDEs.- 11.1 Dirichlet problem for the Laplace operator.- 11.2 Neumann problem for the Laplace operator.- 11.3 General variational formulation; existence, uniqueness.- 11.4 Examples.- 11.5 (Navier-) Stokes equations.- 11.6 Regularity of the solution of the variational problem.- 12 Finite element approximations of variational problems.- 12.1 Internal approximation of Hilbert spaces.- 12.2 Discretized variational problem.- 12.3 Finite element approximations of Sobolev spaces.- 12.3.1 Definition of finite element.- 12.3.2 Linear finite element approximation of L2(?).- 12.3.3 Linear finite element approximation of H01(?).- 12.3.4 Quadratic finite element approximation of H01(?).- 12.3.5 Linear finite element approximation of H1(?).- 12.3.6 Finite element approximation of V.- 12.4 Interpretation of the discretized variational problem.- 12.4.1 Dirichlet-Neumann problem for the Laplace operator.- 12.4.2 Stokes problem.- 13 Error analysis of the FEM.- 13.1 H1 and L2 error estimates.- 13.2 Numerical integration.- 14 Mixed Finite Element Methods.- IV Current Research Topics.- 15 Capillary free boundaries governed by the Navier-Stokes equations.- 15.1 Mathematical model.- 15.2 Normal stress iterative method.- 15.3 Newton’s method for free boundaries.- 16 Non-Isothermal flows.- 16.1 Mathematical model.- 16.2 Numerical treatment.- 17 Turbulence.- 17.1 Mathematical models.- 17.2 Numerical treatment.- 18 Non-Newtonian fluids.- 18.1 Mathematical models.- 18.2 Numerical treatment.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer
  • Data di pubblicazione2001
  • ISBN 10 1402003099
  • ISBN 13 9781402003097
  • RilegaturaCopertina flessibile
  • LinguaInglese
  • Numero di pagine500
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: come nuovo
Like New
Visualizza questo articolo

EUR 29,78 per la spedizione da Regno Unito a Italia

Destinazione, tempi e costi

EUR 11,00 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9789027721488: Finite Element Methods and Navier-Stokes Equations: v. 22

Edizione in evidenza

ISBN 10:  9027721483 ISBN 13:  9789027721488
Casa editrice: D Reidel Pub Co, 1986
Rilegato

Risultati della ricerca per Finite Element Methods and Navier-Stokes Equations...

Immagini fornite dal venditore

C. Cuvelier
ISBN 10: 1402003099 ISBN 13: 9781402003097
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In present-day technology the engineer is faced with complicated problems which can be solved only by advanced numerical methods using digital computers. He should have mathematical models at his disposal in order to simulate the behavior of physical systems. In many cases, including problems in physics, mechanics, chemistry, biology, civil engineering, electrodynamics, solid mechanics, space engineering, petroleum engineering, weather-forecasting, mass transport, multiphase flow and, last but not least, hydrodynamics, such a physical system can be described mathematically by one or more partial differential equations. Some of these problems require extreme accuracy, while for other problems only the qualitative behavior of the solution need to be studied. The finite element method (FEM) is one of the most commonly used methods for solving partial differential equations (PDEs). It makes use of the computer and is very general in the sense that it can be applied to both steady-state and transient, linear and nonlinear problems in geometries of arbitrary space dimension. The FEM is in fact a method which transforms a PDE into a system of linear (algebraic) equations. The following aspects may be identified in the study of a physical phenomenon: (i) engineering-mathematical sciences to formulate the problem correctly in terms of PDEs (ii) numerical methods to construct and to solve the system of algebraic equations; applied numerical functional analysis to give error estimates and convergence proofs (iii) informatics and programming to perform the calculations efficiently on the computer. 500 pp. Englisch. Codice articolo 9781402003097

Contatta il venditore

Compra nuovo

EUR 106,99
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

C. Cuvelier
ISBN 10: 1402003099 ISBN 13: 9781402003097
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In present-day technology the engineer is faced with complicated problems which can be solved only by advanced numerical methods using digital computers. He should have mathematical models at his disposal in order to simulate the behavior of physical systems. In many cases, including problems in physics, mechanics, chemistry, biology, civil engineering, electrodynamics, solid mechanics, space engineering, petroleum engineering, weather-forecasting, mass transport, multiphase flow and, last but not least, hydrodynamics, such a physical system can be described mathematically by one or more partial differential equations. Some of these problems require extreme accuracy, while for other problems only the qualitative behavior of the solution need to be studied. The finite element method (FEM) is one of the most commonly used methods for solving partial differential equations (PDEs). It makes use of the computer and is very general in the sense that it can be applied to both steady-state and transient, linear and nonlinear problems in geometries of arbitrary space dimension. The FEM is in fact a method which transforms a PDE into a system of linear (algebraic) equations. The following aspects may be identified in the study of a physical phenomenon: (i) engineering-mathematical sciences to formulate the problem correctly in terms of PDEs (ii) numerical methods to construct and to solve the system of algebraic equations; applied numerical functional analysis to give error estimates and convergence proofs (iii) informatics and programming to perform the calculations efficiently on the computer. Codice articolo 9781402003097

Contatta il venditore

Compra nuovo

EUR 114,36
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

August Segal C. Cuvelier A.A. van Steenhoven
Editore: Springer, 2001
ISBN 10: 1402003099 ISBN 13: 9781402003097
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26130609994

Contatta il venditore

Compra nuovo

EUR 159,93
Convertire valuta
Spese di spedizione: EUR 7,92
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Segal August Cuvelier C. van Steenhoven A.A.
Editore: Springer, 2001
ISBN 10: 1402003099 ISBN 13: 9781402003097
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 18130609984

Contatta il venditore

Compra nuovo

EUR 167,94
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Segal August Cuvelier C. van Steenhoven A.A.
Editore: Springer, 2001
ISBN 10: 1402003099 ISBN 13: 9781402003097
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 129977493

Contatta il venditore

Compra nuovo

EUR 166,29
Convertire valuta
Spese di spedizione: EUR 10,54
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

C. Cuvelier
Editore: Springer, 2002
ISBN 10: 1402003099 ISBN 13: 9781402003097
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 504 pages. 8.70x6.10x1.20 inches. In Stock. Codice articolo zk1402003099

Contatta il venditore

Compra nuovo

EUR 186,95
Convertire valuta
Spese di spedizione: EUR 11,91
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Cuvelier, C., Segal, A., van Steenhoven, A.A.
Editore: Springer, 2001
ISBN 10: 1402003099 ISBN 13: 9781402003097
Antico o usato Paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Like New. Like New. book. Codice articolo ERICA79014020030996

Contatta il venditore

Compra usato

EUR 181,58
Convertire valuta
Spese di spedizione: EUR 29,78
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello