9781447121138: Robust Multivariable Flight Control

Sinossi

Manual flight control system design for fighter aircraft is one of the most demanding problems in automatic control. Fighter aircraft dynamics generally have highly coupled uncertain and nonlinear dynamics. Multivariable control design techniques offer a solution to this problem. Robust Multivariable Flight Control provides the background, theory and examples for full envelope manual flight control system design. It gives a versatile framework for the application of advanced multivariable control theory to aircraft control problems. Two design case studies are presented for the manual flight control of lateral/directional axes of the VISTA-F-16 test vehicle and an F-18 trust vectoring system. They demonstrate the interplay between theory and the physical features of the systems.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1 Introduction.- 1.1 References.- 2 Technical Preliminaries.- 2.1 Aircraft Dynamics.- 2.1.1 Trimmed Equations.- 2.1.2 Longitudinal Linear Equations of Motion.- 2.1.3 Lateral/Directional Linear Equations of Motion.- 2.2 Flying Qualities.- 2.2.1 Longitudinal Response Requirements.- 2.2.2 Lateral/Directional Response Requirements.- 2.3 Uncertainty Representation.- 2.4 Structured Singular Value Analysis.- 2.5 Dynamic Inversion.- 2.6 Robust Eigenstructure Assignment.- 2.7 Full Order H? Design.- 2.8 Reduced Order Observer Based H? Design.- 2.9 Structured Singular Value Synthesis.- 2.10 Balanced Realizations and Truncation.- 2.11 Conclusions.- 2.12 References.- 3 Control Design Methodology.- 3.1 Control Selector.- 3.2 Inner Equalization Loop.- 3.3 Outer Robust Performance Loop.- 3.4 Conclusions.- 3.5 References.- 4 VISTA F-16 Lateral/Directional Design.- 4.1 Model Description.- 4.2 Flying Qualities Requirements.- 4.3 Control Selector Design.- 4.4 Inner Loop Design.- 4.4.1 Inner Loop Formulation.- 4.4.2 Low Angle of Attack Inner Loop Results.- 4.4.3 High Angle of Attack Inner Loop Results.- 4.5 Outer Loop Design.- 4.5.1 Outer Loop Synthesis.- 4.5.1.1 Ideal Model Generation.- 4.5.1.2 Performance Weighting.- 4.5.1.3 Actuator Weighting.- 4.5.1.4 Parameter Uncertainty Weighting.- 4.5.2 Low Angle of Attack Outer Loop Results.- 4.5.3 High Angle of Attack Outer Loop Results.- 4.6 Controller Implementation.- 4.7 Robustness Analysis.- 4.7.1 Low Angle of Attack Robustness Results.- 4.7.1.1 Low Angle of Attack Structured Uncertainty.- 4.7.1.2 Low Angle of Attack Unstructured Uncertainty.- 4.7.1.3 Low Angle of Attack Robust Performance.- 4.7.2 High Angle of Attack Robustness Results.- 4.7.2.1 High Angle of Attack Structured Uncertainty.- 4.7.2.2 High Angle of Attack Unstructured Uncertainty.- 4.7.2.3 High Angle of Attack Robust Performance.- 4.7.3 Robustness Analysis of Low/High Angle of Attack Blending.- 4.8 Nonlinear Analysis.- 4.8.1 Conventional Maneuvers.- 4.8.2 High Angle of Attack Maneuvers.- 4.9 Conclusions and Lessons Learned.- 4.10 References.- Appendix 4.- Low Angle of Attack Design and Analysis Matrices.- High Angle of Attack Design and Analysis Matrices.- Outer Loop Controller Matrices.- 5 Thrust Vectoring F-18 Design.- 5.1 Model Description.- 5.1.1 Nonlinear model.- 5.1.2 Linear model.- 5.2 Control Selector Design.- 5.3 Longitudinal Axis Controller.- 5.3.1 Inner Loop Design.- 5.3.2 Outer Loop Design.- 5.3.3 Robustness Analysis.- 5.3.4 Flying Qualities Analysis.- 5.4 Lateral/Directional Axes Controller.- 5.4.1 Inner Loop Design.- 5.4.2 Outer Loop Design.- 5.4.3 Robustness Analysis.- 5.4.4 Flying Qualities Analysis.- 5.5 Nonlinear Analysis.- 5.6 Conclusions and Lessons Learned.- 5.7 References.- Appendix 5.- Actuator Models.- Linear Design Models and Flight Conditions.- Inner Loop Gain Schedules.- Outer Loop Controllers.- 6 Conclusions.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo