A Probabilistic Theory of Pattern Recognition: 31 - Brossura

Devroye, Luc; Györfi, Laszlo; Lugosi, Gabor

 
9781461268772: A Probabilistic Theory of Pattern Recognition: 31

Sinossi

Pattern recognition presents a significant challege for scientists and engineers, and many different approaches have been proposed. This book provides a self-contained account of probabilistic techniques that have been applied to the subject. Researchers and graduate students will benefit from this wide-ranging account of the field.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

Preface * Introduction * The Bayes Error * Inequalities and alternate distance measures * Linear discrimination * Nearest neighbor rules * Consistency * Slow rates of convergence Error estimation * The regular histogram rule * Kernel rules Consistency of the k-nearest neighbor rule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-Chervonenkis theory * Lower bounds for empirical classifier selection * The maximum likelihood principle * Parametric classification * Generalized linear discrimination * Complexity regularization * Condensed and edited nearest neighbor rules * Tree classifiers * Data-dependent partitioning * Splitting the data * The resubstitution estimate * Deleted estimates of the error probability * Automatic kernel rules * Automatic nearest neighbor rules * Hypercubes and discrete spaces * Epsilon entropy and totally bounded sets * Uniform laws of large numbers * Neural networks * Other error estimates * Feature extraction * Appendix * Notation * References * Index

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9780387946184: A Probabilistic Theory of Pattern Recognition: 31

Edizione in evidenza

ISBN 10:  0387946187 ISBN 13:  9780387946184
Casa editrice: Springer-Verlag GmbH, 1996
Rilegato