Python est devenu en quelques années un langage majeur dans l'univers des applications centrées sur le traitement des données, et plus particulièrement des gros volumes de données (big data). Cet ouvrage servira de guide à tous ceux qui s'intéressent à l'utilisation de Python pour le travail sur les données et l'automatisation de certaines tâches (data science). Il met l'accent sur la préparation et la mise en forme des données qui sont essentielles dans la qualité du résultat et qui constituent aujourd'hui une part importante du travail du data scientist. Si vous vous intéressez au traitement des données avec le langage Python, cet ouvrage s'adresse à vous. Que vous soyez débutant en Python ou que vous ayez une expérience significative, il vous apportera les clés pour utiliser ce langage en data science. Ce livre répond à de nombreuses questions sur Python : Comment utiliser Python en data science ? Comment coder en Python ? Comment préparer des données avec Python ? Comment créer des visualisations attractives avec Python ? Comment appliquer des modèles de machine learning et de deep learning avec Python ? Comment passer aux environnements big data ? Vous apprendrez à tirer parti des multiples outils Python tels que Anaconda, Jupyter, NumPy, Pandas, Matplotlib, Seaborn, Bokeh, Scikit-Learn, TensorFlow, PySpark... pour mettre en place vos traitements. Cette deuxième édition est complétée et enrichie par des mises à jour de code liées aux évolutions de Python et des packages de data science. Des données plus récentes sont aussi utilisées. Les + en ligne : l'ensemble du code compris dans cet ouvrage est disponible sous la forme de notebooks Jupyter dans le repository public de l'auteur : github.com/emjako/pythondatascientist.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Emmanuel Jakobowicz est data scientist, développeur et formateur Python depuis de nombreuses années. Il est fondateur de Stat4decision, entreprise spécialisée en conseil et formation en data science, et co-organisateur du Meetup PyData Paris. Spécialisé dans la création et l'implémentation de méthodes avancées d'analyse de données, il a un doctorat en statistique appliquée.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: medimops, Berlin, Germania
Condizione: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present. Codice articolo M02100812246-G
Quantità: 1 disponibili
Da: medimops, Berlin, Germania
Condizione: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Codice articolo M02100812246-V
Quantità: 1 disponibili