Articoli correlati a Metalearning: Applications to Automated Machine Learning...

Metalearning: Applications to Automated Machine Learning and Data Mining - Rilegato

 
9783030670238: Metalearning: Applications to Automated Machine Learning and Data Mining

Sinossi

<p>This open access book as one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. &nbsp;&nbsp;As a related area to metalearning and a hot topic currently, automated machine learning (AutoML) is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user.</p><p>This book offers a comprehensive and thorough introduction to almost all aspects of metalearning and AutoML, covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience.</p><p>This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence.</p>

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

<p><b>Pavel B. Brazdil</b> is a senior researcher at LIAAD INESC TEC, Porto and Full Professor at FEP, University of Porto, Portugal and since 2019, Professor Emeritus. He obtained his PhD in machine learning in 1981 at the University of Edinburgh. Since the 1990s he has pioneered the area of metalearning and supervised various PhD students in this area. His main interests lie in machine learning, data mining, algorithm selection, metalearning, AutoML and text mining, among others. He has edited 6 books and more than 110 papers referenced on Google Scholar, of which approximately 80 are also on ISI/DBLP/Scopus. He was a program chair of various machine learning conferences (e.g., in 1992,2005), has co-organized various workshops on metalearning and acted as a co-editor of two special issues of MLJ on this topic. He is a member of the editorial board of the <i>Machine Learning Journal</i> and a <i>Fellow of EurAI</i>. </p><p><b>Jan N. van Rijn</b> obtained his PhD in Computer Science in 2016 at Leiden Institute of Advanced Computer Science (LIACS), Leiden University (the Netherlands). During his PhD, he made several funded research visits to the University of Waikato (New Zealand) and University of Porto (Portugal). After obtaining his PhD, he worked as a postdoctoral researcher in the Machine Learning lab at University of Freiburg (Germany), headed by Prof. Dr. Frank Hutter, after which he moved to work as a postdoctoral researcher at Columbia University in the City of New York (USA). He currently holds a position as assistant professor at LIACS, Leiden University. His research aim is to democratize the access to machine learning and artificial intelligence across societal institutions. He is one of the founders of OpenML.org, an open science platform for machine learning. His research interests include artificial intelligence, automated machine learning and metalearning.</p><p><b>Carlos Soares</b> is an Associate Professor at the Faculty of Engineering of U. Porto. Carlos is also an External Advisor for Intelligent Systems at Fraunhofer Portugal AICOS, a researcher at LIACC and a collaborator at LIAAD-INESC TEC. He is also a lecturer at the Porto Business School. The focus of his research is on metalearning/autoML but he has a general interest in Data Science. He has participated in 20+ national and international R&ID, as well as consulting projects. Carlos regularly collaborates with companies, including recent projects with Feedzai, Accenture and InovRetail. He has published/edited several books and 150+ papers in journals and conferences, (90+/125+ indexed by ISI/Scopus) and supervised 10+/50+ Ph.D./M.Sc. theses. Recent participation in the organization of events, includes ECML PKDD 2015, IDA 2016 and Discovery Science 2021 as programme co-chair. In 2009, he was awarded the Scientific Merit and Excellence Award of the Portuguese AI Association.</p><p><b>Joaquin </b><b>Vanschoren</b> is a tenured Assistant Professor of machine learning at the Eindhoven University of Technology (TU/e). He received his PhD from the Katholieke Universiteit Leuven, Belgium. His research focuses on the automation of machine learning (AutoML) and metalearning. He founded and leads OpenML.org, an online platform used all over the world for sharing machine learning data, algorithms, and models. He also chairs the Open Machine Learning Foundation, and co-chairs the W3C Machine Learning Schema Community Group. He is the recipient of an Amazon Research Award, an Azure Research Award, the Dutch Data Prize, and an ECMLPKDD demonstration award. He is a co-author and co-editor of the book “Automatic Machine Learning: Methods, Systems, Challenges”. He has been tutorial speaker at NeurIPS, AAAI, and ECMLPKDD, and an invited speaker at ECDA, StatComp, AutoML@ICML, CiML@NeurIPS, DEEM@SIGMOD, AutoML@PRICAI, MLOSS@NeurIPS, and many other occasions. He was general chair at LION 2016, datasets and benchmarks chair at NeurIPS 2021, program chair of Discovery Science 2018, demo chair at ECMLPKDD 2013, and he co-organizes the AutoML and Meta-Learning workshop series at NeurIPS and ICML from 2013 to 2021.</p>

Dalla quarta di copertina

<p>This open access book as one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. &nbsp;&nbsp;As a related area to metalearning and a hot topic currently, automated machine learning (AutoML) is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user.</p><p>This book offers a comprehensive and thorough introduction to almost all aspects of metalearning and AutoML, covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience.</p><p>This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence.</p><p></p>

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer-Nature New York Inc
  • Data di pubblicazione2022
  • ISBN 10 3030670236
  • ISBN 13 9783030670238
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero edizione2
  • Numero di pagine360
  • Contatto del produttorenon disponibile

Compra usato

Condizioni: buono
inglese Condizioni dell'esterno...
Visualizza questo articolo

GRATIS per la spedizione in Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783030670269: Metalearning: Applications to Automated Machine Learning and Data Mining

Edizione in evidenza

ISBN 10:  3030670260 ISBN 13:  9783030670269
Casa editrice: Springer, 2022
Brossura

Risultati della ricerca per Metalearning: Applications to Automated Machine Learning...

Immagini fornite dal venditore

aa.vv.
Editore: Springer, 2022
ISBN 10: 3030670236 ISBN 13: 9783030670238
Antico o usato Rilegato

Da: Miliardi di Parole, Pietra Marazzi, AL, Italia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Buone. inglese Condizioni dell'esterno: Ottime Condizioni dell'interno: Ottime. Codice articolo LBC_110259

Contatta il venditore

Compra usato

EUR 50,90
Convertire valuta
Spese di spedizione: GRATIS
In Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pavel Brazdil|Jan N. van Rijn|Carlos Soares|Joaquin Vanschoren
ISBN 10: 3030670236 ISBN 13: 9783030670238
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processesNew edition introduces the recent&nbspAutoML&nbspapproach&nbspand clarifies. Codice articolo 458552060

Contatta il venditore

Compra nuovo

EUR 48,37
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pavel Brazdil
ISBN 10: 3030670236 ISBN 13: 9783030670238
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This open access book offers a comprehensive and thorough introduction to almost all aspects of metalearning and automated machine learning (AutoML), covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience.As one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, AutoML is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user.This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence. 360 pp. Englisch. Codice articolo 9783030670238

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pavel Brazdil
ISBN 10: 3030670236 ISBN 13: 9783030670238
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book offers a comprehensive and thorough introduction to almost all aspects of metalearning and automated machine learning (AutoML), covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience.As one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, AutoML is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user.This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence. Codice articolo 9783030670238

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Pavel Brazdil
ISBN 10: 3030670236 ISBN 13: 9783030670238
Nuovo Rilegato
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This open access book offers a comprehensive and thorough introduction to almost all aspects of metalearning and automated machine learning (AutoML), covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience.As one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, AutoML is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user.This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 360 pp. Englisch. Codice articolo 9783030670238

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Brazdil, Pavel; Van Rijn, Jan N.; Soares, Carlos; Vanschoren, Joaquin
Editore: Springer, 2022
ISBN 10: 3030670236 ISBN 13: 9783030670238
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783030670238_new

Contatta il venditore

Compra nuovo

EUR 61,11
Convertire valuta
Spese di spedizione: EUR 10,50
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Brazdil, Pavel; Van Rijn, Jan N.; Soares, Carlos; Vanschoren, Joaquin
Editore: Springer, 2022
ISBN 10: 3030670236 ISBN 13: 9783030670238
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44295351-n

Contatta il venditore

Compra nuovo

EUR 59,44
Convertire valuta
Spese di spedizione: EUR 17,34
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Brazdil, Pavel; Van Rijn, Jan N.; Soares, Carlos; Vanschoren, Joaquin
Editore: Springer, 2022
ISBN 10: 3030670236 ISBN 13: 9783030670238
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44295351-n

Contatta il venditore

Compra nuovo

EUR 61,10
Convertire valuta
Spese di spedizione: EUR 17,51
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Brazdil, Pavel; Van Rijn, Jan N.; Soares, Carlos; Vanschoren, Joaquin
Editore: Springer, 2022
ISBN 10: 3030670236 ISBN 13: 9783030670238
Nuovo Rilegato

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783030670238

Contatta il venditore

Compra nuovo

EUR 71,49
Convertire valuta
Spese di spedizione: EUR 7,81
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Brazdil, Pavel; Van Rijn, Jan N.; Soares, Carlos; Vanschoren, Joaquin
Editore: Springer, 2022
ISBN 10: 3030670236 ISBN 13: 9783030670238
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 44295351

Contatta il venditore

Compra usato

EUR 65,17
Convertire valuta
Spese di spedizione: EUR 17,34
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 7 copie di questo libro

Vedi tutti i risultati per questo libro