Articoli correlati a Guide to Convolutional Neural Networks: A Practical...

Guide to Convolutional Neural Networks: A Practical Application to Traffic-sign Detection and Classification - Rilegato

 
9783319575490: Guide to Convolutional Neural Networks: A Practical Application to Traffic-sign Detection and Classification

Sinossi

This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.

Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.

This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreSpringer-Nature New York Inc
  • Data di pubblicazione2017
  • ISBN 10 331957549X
  • ISBN 13 9783319575490
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero edizione1
  • Numero di pagine308

Compra usato

Condizioni: molto buono
The book has been read, but is...
Visualizza questo articolo

EUR 6,66 per la spedizione da Regno Unito a U.S.A.

Destinazione, tempi e costi

EUR 23,00 per la spedizione da Germania a U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783319861906: Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification

Edizione in evidenza

ISBN 10:  3319861905 ISBN 13:  9783319861906
Casa editrice: Springer, 2018
Brossura

Risultati della ricerca per Guide to Convolutional Neural Networks: A Practical...

Foto dell'editore

Jahani Heravi, Elnaz
Editore: Springer, 2017
ISBN 10: 331957549X ISBN 13: 9783319575490
Antico o usato Paperback

Da: WorldofBooks, Goring-By-Sea, WS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Codice articolo GOR013955910

Contatta il venditore

Compra usato

EUR 24,15
Convertire valuta
Spese di spedizione: EUR 6,66
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Habibi-Aghdam, H. et al (Eds.):
Editore: Cham, Springer., 2017
ISBN 10: 331957549X ISBN 13: 9783319575490
Antico o usato Rilegato

Da: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

xxiii, 282 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Codice articolo 817MB

Contatta il venditore

Compra usato

EUR 12,00
Convertire valuta
Spese di spedizione: EUR 30,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Habibi Aghdam, Hamed und Elnaz Jahani Heravi:
Editore: Springer, 2017
ISBN 10: 331957549X ISBN 13: 9783319575490
Antico o usato Rilegato

Da: Studibuch, Stuttgart, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

hardcover. Condizione: Gut. 305 Seiten; 9783319575490.3 Gewicht in Gramm: 1. Codice articolo 819510

Contatta il venditore

Compra usato

EUR 10,24
Convertire valuta
Spese di spedizione: EUR 61,50
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Elnaz Jahani Heravi
ISBN 10: 331957549X ISBN 13: 9783319575490
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems. 308 pp. Englisch. Codice articolo 9783319575490

Contatta il venditore

Compra nuovo

EUR 80,24
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Elnaz Jahani Heravi
ISBN 10: 331957549X ISBN 13: 9783319575490
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems. Codice articolo 9783319575490

Contatta il venditore

Compra nuovo

EUR 80,24
Convertire valuta
Spese di spedizione: EUR 31,42
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Hamed Habibi Aghdam|Elnaz Jahani Heravi
ISBN 10: 331957549X ISBN 13: 9783319575490
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Describes how to practically solve problems of traffic sign detection and classification using deep learning methodsExplains how the methods can be easily implemented, without requiring prior background knowledge in the field of deep learning. Codice articolo 147656769

Contatta il venditore

Compra nuovo

EUR 68,62
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello