Articoli correlati a Guide to Convolutional Neural Networks: A Practical...

Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification - Brossura

 
9783319861906: Guide to Convolutional Neural Networks: A Practical Application to Traffic-Sign Detection and Classification

Sinossi

This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.

Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.

This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Dalla quarta di copertina

This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.

Topics and features:

  • Explains the fundamental concepts behind training linear classifiers and feature learning
  • Discusses the wide range of loss functions for training binary and multi-class classifiers
  • Illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks
  • Presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks
  • Describes two real-world examples of the detection and classification of traffic signs using deep learning methods
  • Examines a range of varied techniques for visualizing neural networks, using a Python interface
  • Provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website

This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9783319575490: Guide to Convolutional Neural Networks: A Practical Application to Traffic-sign Detection and Classification

Edizione in evidenza

ISBN 10:  331957549X ISBN 13:  9783319575490
Casa editrice: Springer-Nature New York Inc, 2017
Rilegato

Risultati della ricerca per Guide to Convolutional Neural Networks: A Practical...

Immagini fornite dal venditore

Hamed Habibi Aghdam|Elnaz Jahani Heravi
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Describes how to practically solve problems of traffic sign detection and classification using deep learning methodsExplains how the methods can be easily implemented, without requiring prior background knowledge in the field of deep learning. Codice articolo 458626493

Contatta il venditore

Compra nuovo

EUR 47,23
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Elnaz Jahani Heravi
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems. 308 pp. Englisch. Codice articolo 9783319861906

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Elnaz Jahani Heravi
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems. Codice articolo 9783319861906

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Elnaz Jahani Heravi
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -This must-read text/reference introduces the fundamental concepts of convolutional neural networks (ConvNets), offering practical guidance on using libraries to implement ConvNets in applications of traffic sign detection and classification. The work presents techniques for optimizing the computational efficiency of ConvNets, as well as visualization techniques to better understand the underlying processes. The proposed models are also thoroughly evaluated from different perspectives, using exploratory and quantitative analysis.Topics and features: explains the fundamental concepts behind training linear classifiers and feature learning; discusses the wide range of loss functions for training binary and multi-class classifiers; illustrates how to derive ConvNets from fully connected neural networks, and reviews different techniques for evaluating neural networks; presents a practical library for implementing ConvNets, explaining how to use a Python interface for the library to create and assess neural networks; describes two real-world examples of the detection and classification of traffic signs using deep learning methods; examines a range of varied techniques for visualizing neural networks, using a Python interface; provides self-study exercises at the end of each chapter, in addition to a helpful glossary, with relevant Python scripts supplied at an associated website.This self-contained guide will benefit those who seek to both understand the theory behind deep learning, and to gain hands-on experience in implementing ConvNets in practice. As no prior background knowledge in the field is required to follow the material, the book is ideal for all students of computer vision and machine learning, and will also be of great interest to practitioners working on autonomous cars and advanced driver assistance systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 308 pp. Englisch. Codice articolo 9783319861906

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Habibi Aghdam, Hamed
Editore: Springer, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26376468509

Contatta il venditore

Compra nuovo

EUR 76,81
Convertire valuta
Spese di spedizione: EUR 7,70
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Habibi Aghdam, Hamed
Editore: Springer, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 369609666

Contatta il venditore

Compra nuovo

EUR 78,24
Convertire valuta
Spese di spedizione: EUR 10,23
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Habibi Aghdam, Hamed
Editore: Springer, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND. Codice articolo 18376468503

Contatta il venditore

Compra nuovo

EUR 81,01
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Hamed Habibi Aghdam
Editore: Springer, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. reprint edition. 282 pages. 9.50x6.25x0.75 inches. In Stock. Codice articolo 3319861905

Contatta il venditore

Compra nuovo

EUR 84,32
Convertire valuta
Spese di spedizione: EUR 11,56
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Habibi Aghdam, Hamed, Jahani Heravi, Elnaz
Editore: Springer, 2018
ISBN 10: 3319861905 ISBN 13: 9783319861906
Nuovo Paperback

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. New. book. Codice articolo ERICA80033198619056

Contatta il venditore

Compra nuovo

EUR 100,01
Convertire valuta
Spese di spedizione: EUR 28,90
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello