Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Dr. Herodotos Herodotou is a tenure-track Lecturer at the Cyprus University of Technology. He received his Ph.D. in Computer Science from Duke University in 2012. His research interests are in large-scale Data Processing and Database Systems. In particular, his work focuses on automatic manageability and tuning of data-intensive computing systems.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Herodotou HerodotosDr. Herodotos Herodotou is a tenure-track Lecturer at the Cyprus University of Technology. He received his Ph.D. in Computer Science from Duke University in 2012. His research interests are in large-scale Data Proc. Codice articolo 158246795
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems. 328 pp. Englisch. Codice articolo 9783330001404
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems. Codice articolo 9783330001404
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Modern industrial, government, and academic organizations are collecting massive amounts of data at an unprecedented scale and pace. The ability to perform timely and cost-effective analytical processing of such large datasets in order to extract deep insights is now a key ingredient for success. Existing database systems are adapting to the new status quo while large-scale dataflow systems like MapReduce are becoming popular for executing analytical workloads on Big Data. In order to ensure good and robust performance automatically on such systems, a novel dynamic optimization approach has been developed that works across different tuning scenarios and systems. The solution is based on (i) collecting monitoring information in order to learn the run-time behavior of workloads, (ii) deploying appropriate models to predict the impact of hypothetical tuning choices on workload behavior, and (iii) using efficient search strategies to find tuning choices that give good workload performance. The dynamic nature enables this solution to overcome the new challenges posed by Big Data, and also makes it applicable to both MapReduce and Database systems.Books on Demand GmbH, Überseering 33, 22297 Hamburg 328 pp. Englisch. Codice articolo 9783330001404
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26394745952
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 401663935
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 18394745962
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 328 pages. 8.66x5.91x0.74 inches. In Stock. Codice articolo 3330001402
Quantità: 1 disponibili
Da: dsmbooks, Liverpool, Regno Unito
paperback. Condizione: New. New. book. Codice articolo D8S0-3-M-3330001402-6
Quantità: 1 disponibili