partialdifferentialequations ,variationalinequal ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Invited Papers.- Minimization of the Sum of Several Linear Fractional Functions.- Discrete Higher Order Convex Functions and their Applications.- Cuts and Semidefinite Relaxations for Nonconvex Quadratic Problems.- Contributed Papers.- The Steiner Ratio of L3p.- Normal Cones to Sublevel Sets: An Axiomatic Approach. Applications in Quasiconvexity and Pseudoconvexity.- Multiobjective Programming with ?-convex Functions.- Rufián-Lizana, Pascual Ruiz-Canales Vector Invex N-set Functions and Minmax Programming.- On the Supremum in Quadratic Fractional Programming.- First and Second Order Characterizations of a Class of Pseudoconcave Vector Functions.- New Invexity-Type Conditions in Constrained Optimization.- Stochastic s-(increasing) Convexity.- Fixed Point Theorems, Coincidence Theorems and Variational Inequalities.- Representation of a Polynomial Function as a Difference of Convex Polynomials, with an Application.- Proper Efficiency and Generalized Convexity in Nonsmooth Vector Optimization Problems.- Duality for Fractional Min-max Problems Involving Arcwise Connected and Generalized Arcwise Connected Functions.- Generalized Convexity for Unbounded Sets: The Enlarged Space.- A Note on Minty Variational Inequalities and Generalized Monotonicity.- On Vector Equilibrium and Vector Variational Inequality Problems.- Stochastic Orders Generated by Generalized Convex Functions.- Separation Theorems for Convex Sets and Convex Functions with Invariance Properties.- Convexity and Generalized Convexity Methods for the Study of Hamilton-Jacobi Equations.- Higher-order Monotone Functions and Probability Theory.- Convexity and Decomposability in Multivalued Analysis.- Scalar Characterization of Generalized Quasiconvex Functions.- Optimality and Wolfe Duality for Multiobjective Programming Problems Involving?-set Functions.- Vector Stochastic Optimization Problems.- On Suprema of Abstract Convex and Quasi-convex Hulls.- Specific Numerical Methods for Solving Some Special Max-min Programming Problems Involving Generalized Convex Functions.
Generalized Convexity And Generalized Monotonicity: Proceedings Of The 6Th International Symposium On Generalized Convexity/Monotonicity, Samos, September 1999 by Juan-Enrique Martinez-Legaz, Nicolas Hadjisavvas, Jean-Paul Penot, 9783540418061, Springer, 2001, Paperback
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 15,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Antiquariat Thomas Nonnenmacher, Freiburg, Germania
Softcover/Paperback. Condizione: Gut. 410 Seiten. Laminiertes ehem. Bibliotheksexemplar mit Rückensignatur und Stempeln. Gut erhalten. 9783540418061 Sprache: Englisch Gewicht in Gramm: 1200. Codice articolo 95297
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Invited Papers.- Minimization of the Sum of Several Linear Fractional Functions.- Discrete Higher Order Convex Functions and their Applications.- Cuts and Semidefinite Relaxations for Nonconvex Quadratic Problems.- Contributed Papers.- The Steiner Ratio of . Codice articolo 4889454
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A famous saying (due toHerriot)definescultureas 'what remainswhen everythingisforgotten '. One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti,in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone variablefunctionis quasiconvex ,as well asanyone-variable functionwhich is nonincreasingon someinterval(-00,a] or(-00,a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced ,often fortheneeds ofvariousapplications: algorithms ,economics, engineering ,management science,multicriteria optimization ,optimalcontrol, statistics .Thus,theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc tions,withapplicationsto partialdifferentialequations ,variationalinequal ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans. 428 pp. Englisch. Codice articolo 9783540418061
Quantità: 2 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 915850-n
Quantità: 15 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9783540418061
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9783540418061_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - A famous saying (due toHerriot)definescultureas 'what remainswhen everythingisforgotten '. One couldparaphrase thisdefinitionin statingthat generalizedconvexity iswhat remainswhen convexity has been dropped . Of course, oneexpectsthatsome convexityfeaturesremain.For functions, convexity ofepigraphs(what is above thegraph) is a simplebut strong assumption.It leads tobeautifulpropertiesand to a field initselfcalled convex analysis. In several models, convexity is not presentandintroducing genuine convexityassumptionswouldnotberealistic. A simple extensionof thenotionof convexity consists in requiringthatthe sublevel sets ofthe functionsare convex (recall thata sublevel set offunction a is theportionof thesourcespaceon which thefunctiontakesvalues below a certainlevel).Its first use is usuallyattributed to deFinetti,in 1949. This propertydefinesthe class ofquasiconvexfunctions, which is much larger thanthe class of convex functions: a non decreasingor nonincreasingone variablefunctionis quasiconvex ,as well asanyone-variable functionwhich is nonincreasingon someinterval(-00,a] or(-00,a) and nondecreasingon its complement.Many otherclasses ofgeneralizedconvexfunctionshave been introduced ,often fortheneeds ofvariousapplications: algorithms ,economics, engineering ,management science,multicriteria optimization ,optimalcontrol, statistics .Thus,theyplay animportantrole in severalappliedsciences . A monotonemappingF from aHilbertspace to itself is a mappingfor which the angle between F(x) - F(y) and x- y isacutefor anyx, y. It is well-known thatthegradientof a differentiable convexfunctionis monotone.The class of monotonemappings(and theclass ofmultivaluedmonotoneoperators) has remarkableproperties.This class has beengeneralizedin various direc tions,withapplicationsto partialdifferentialequations ,variationalinequal ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans. Codice articolo 9783540418061
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -partialdifferentialequations ,variationalinequal ities,complementarity problemsand more generally, equilibriumproblems. The classes ofgeneralizedmonotonemappingsare more or lessrelatedto the classes ofgeneralizedfunctionsvia differentiation or subdifferentiation procedures.They are also link edvia severalothermeans.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 428 pp. Englisch. Codice articolo 9783540418061
Quantità: 1 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. This volume contains a selection of refereed papers presented at the 6th International Symposium on Generalized Convexity/Monotonicity, and aims to review the latest developments in this interdisciplinary field. Editor(s): Hadjisavvas, Nicolas; Martinez-Legaz, Juan E.; Penot, Jean-Paul. Series: Lecture Notes in Economics and Mathematical Systems. Num Pages: 419 pages, 1 black & white illustrations, 1 colour illustrations, biography. BIC Classification: PBK; PBU. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 22. Weight in Grams: 597. . 2001. Paperback. . . . . Codice articolo V9783540418061
Quantità: 15 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 915850
Quantità: 15 disponibili