Articoli correlati a Similarity-Based Clustering: Recent Developments and...

Similarity-Based Clustering: Recent Developments and Biomedical Applications: 5400 - Brossura

 
9783642018046: Similarity-Based Clustering: Recent Developments and Biomedical Applications: 5400

Sinossi

Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi?cation, prototypes, or Hebbian learning, with a large variety of di?erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro?les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane?cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci?cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way toward important new directions of algorithmic design and accompanying theory.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Dalla quarta di copertina

This book is the outcome of the Dagstuhl Seminar on "Similarity-Based Clustering" held at Dagstuhl Castle, Germany, in Spring 2007.

In three chapters, the three fundamental aspects of a theoretical background, the representation of data and their connection to algorithms, and particular challenging applications are considered. Topics discussed concern a theoretical investigation and foundation of prototype based learning algorithms, the development and extension of models to directions such as general data structures and the application for the domain of medicine and biology.

Similarity based methods find widespread applications in diverse application domains, including biomedical problems, but also in remote sensing, geoscience or other technical domains. The presentations give a good overview about important research results in similarity-based learning, whereby the character of overview articles with references to correlated research articles makes the contributions particularly suited for a first reading concerning these topics.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 2,27 per la spedizione in U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Similarity-Based Clustering: Recent Developments and...

Immagini fornite dal venditore

Villmann, Thomas (EDT); Biehl, M. (EDT); Hammer, Barbara (EDT); Verleysen, Michel (EDT)
Editore: Springer, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 6428158-n

Contatta il venditore

Compra nuovo

EUR 53,42
Convertire valuta
Spese di spedizione: EUR 2,27
In U.S.A.
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020213968

Contatta il venditore

Compra nuovo

EUR 52,32
Convertire valuta
Spese di spedizione: EUR 3,43
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Thomas Villmann
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi?cation, prototypes, or Hebbian learning, with a large variety of di?erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro?les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane?cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci?cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way towardimportant new directions of algorithmic design and accompanying theory. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane?cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783642018046

Contatta il venditore

Compra nuovo

EUR 55,76
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Villmann, Thomas (EDT); Biehl, M. (EDT); Hammer, Barbara (EDT); Verleysen, Michel (EDT)
Editore: Springer, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 6428158

Contatta il venditore

Compra usato

EUR 61,08
Convertire valuta
Spese di spedizione: EUR 2,27
In U.S.A.
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783642018046_new

Contatta il venditore

Compra nuovo

EUR 58,24
Convertire valuta
Spese di spedizione: EUR 13,79
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Villmann, Thomas
Editore: Springer 2009-06, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9783642018046

Contatta il venditore

Compra nuovo

EUR 56,66
Convertire valuta
Spese di spedizione: EUR 17,83
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thomas Villmann
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Similarity-based learning methods have a great potential as an intuitive and exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi cation, prototypes, or Hebbian learning, with a large variety of di erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way toward important new directions of algorithmic design and accompanying theory. 216 pp. Englisch. Codice articolo 9783642018046

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Villmann, Thomas|Biehl, M.|Hammer, B.|Verleysen, M.
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Kartoniert / Broschiert
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi?cation, prototype. Codice articolo 5043497

Contatta il venditore

Compra nuovo

EUR 48,37
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Villmann, Thomas (Editor)/ Biehl, M. (Editor)/ Hammer, B. (Editor)
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 1st edition. 203 pages. 9.00x6.00x0.25 inches. In Stock. Codice articolo x-3642018041

Contatta il venditore

Compra nuovo

EUR 77,42
Convertire valuta
Spese di spedizione: EUR 28,77
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thomas Villmann
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Similarity-based learning methods have a great potential as an intuitive and exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi cation, prototypes, or Hebbian learning, with a large variety of di erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way towardimportant new directions of algorithmic design and accompanying theory.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. Codice articolo 9783642018046

Contatta il venditore

Compra nuovo

EUR 53,49
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 3 copie di questo libro

Vedi tutti i risultati per questo libro