This book mainly addresses the building of face recognition system and Principal Component Analysis (PCA) method in details. PCA is a statistical approach used for reducing the number of variables in face recognition. In PCA, every image in the training set is represented as a linear combination of weighted eigenvectors called eigenfaces. These eigenvectors are obtained from covariance matrix of a training image set called as basis function. The weights are found out after selecting a set of most relevant Eigenfaces. Recognition is performed by projecting a test image onto the subspace spanned by the eigenfaces and then classification is done by measuring Euclidean distance. A number of experiments were done to evaluate the performance of the face recognition system. Here, I used a training database of students of ETE-07 series, RUET, Rajshahi-6204, Bangladesh.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Liton Chandra Paul (Nominated for President Gold Medal,1st Class 1st With Honors) received B.Sc in ETE from RUET, Rajshahi, Bangladesh.Currently, he is working as a lecturer of ETE department at PUST, Pabna, Bangladesh.He has more than 8 international journals & conference papers.He has also another book published by LAP LAMBERT Academic Publishing
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book mainly addresses the building of face recognition system and Principal Component Analysis (PCA) method in details. PCA is a statistical approach used for reducing the number of variables in face recognition. In PCA, every image in the training set is represented as a linear combination of weighted eigenvectors called eigenfaces. These eigenvectors are obtained from covariance matrix of a training image set called as basis function. The weights are found out after selecting a set of most relevant Eigenfaces. Recognition is performed by projecting a test image onto the subspace spanned by the eigenfaces and then classification is done by measuring Euclidean distance. A number of experiments were done to evaluate the performance of the face recognition system. Here, I used a training database of students of ETE-07 series, RUET, Rajshahi-6204, Bangladesh. 80 pp. Englisch. Codice articolo 9783659461453
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Paul Liton ChandraLiton Chandra Paul (Nominated for President Gold Medal,1st Class 1st With Honors) received B.Sc in ETE from RUET, Rajshahi, Bangladesh.Currently, he is working as a lecturer of ETE department at PUST, Pabna, Banglad. Codice articolo 5157518
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 80 pages. 8.66x5.91x0.19 inches. In Stock. Codice articolo __3659461458
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 80 pages. 8.66x5.91x0.19 inches. In Stock. Codice articolo 3659461458
Quantità: 1 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book mainly addresses the building of face recognition system and Principal Component Analysis (PCA) method in details. PCA is a statistical approach used for reducing the number of variables in face recognition. In PCA, every image in the training set is represented as a linear combination of weighted eigenvectors called eigenfaces. These eigenvectors are obtained from covariance matrix of a training image set called as basis function. The weights are found out after selecting a set of most relevant Eigenfaces. Recognition is performed by projecting a test image onto the subspace spanned by the eigenfaces and then classification is done by measuring Euclidean distance. A number of experiments were done to evaluate the performance of the face recognition system. Here, I used a training database of students of ETE-07 series, RUET, Rajshahi-6204, Bangladesh.Books on Demand GmbH, Überseering 33, 22297 Hamburg 80 pp. Englisch. Codice articolo 9783659461453
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book mainly addresses the building of face recognition system and Principal Component Analysis (PCA) method in details. PCA is a statistical approach used for reducing the number of variables in face recognition. In PCA, every image in the training set is represented as a linear combination of weighted eigenvectors called eigenfaces. These eigenvectors are obtained from covariance matrix of a training image set called as basis function. The weights are found out after selecting a set of most relevant Eigenfaces. Recognition is performed by projecting a test image onto the subspace spanned by the eigenfaces and then classification is done by measuring Euclidean distance. A number of experiments were done to evaluate the performance of the face recognition system. Here, I used a training database of students of ETE-07 series, RUET, Rajshahi-6204, Bangladesh. Codice articolo 9783659461453
Quantità: 1 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Face Recognition & Principal Component Analysis Method | Algorithm, Simulation & Discussion | Liton Chandra Paul (u. a.) | Taschenbuch | 80 S. | Englisch | 2013 | LAP LAMBERT Academic Publishing | EAN 9783659461453 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Codice articolo 105618464
Quantità: 5 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Codice articolo 24250535/2
Quantità: 1 disponibili