Articoli correlati a Remote Sensing, Nonlinear Model, Supercomputing

Remote Sensing, Nonlinear Model, Supercomputing - Brossura

 
9783659978203: Remote Sensing, Nonlinear Model, Supercomputing

Sinossi

The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points with <3 ◦C absolute error. Our SVM approach overcomes shortcomings of classical temperature remote sensing technologies, and is the first report of such application.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

His research interests include multisource remote sensing image processing,GIS & GIS system developing, high-performance computation (HPC) and its application in processing RS image, support vector machine (SVM) algorithms and its merging into GIS system, and scalability of image processing for large remote sensing image with HPC.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Risultati della ricerca per Remote Sensing, Nonlinear Model, Supercomputing

Foto dell'editore

Qin, Jiang Lin
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26376111432

Contatta il venditore

Compra nuovo

EUR 37,36
Convertire valuta
Spese di spedizione: EUR 3,41
In U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Qin, Jiang Lin
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 370982551

Contatta il venditore

Compra nuovo

EUR 36,13
Convertire valuta
Spese di spedizione: EUR 7,45
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jiang Lin Qin
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points with 3 C absolute error. Our SVM approach overcomes shortcomings of classical temperature remote sensing technologies, and is the first report of such application. 84 pp. Englisch. Codice articolo 9783659978203

Contatta il venditore

Compra nuovo

EUR 23,90
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Qin, Jiang Lin
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND. Codice articolo 18376111426

Contatta il venditore

Compra nuovo

EUR 37,98
Convertire valuta
Spese di spedizione: EUR 9,95
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Qin, Jiang Lin
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 84 pages. 8.66x5.91x0.19 inches. In Stock. Codice articolo 3659978205

Contatta il venditore

Compra nuovo

EUR 42,62
Convertire valuta
Spese di spedizione: EUR 28,64
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jiang Lin Qin
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Qin Jiang LinHis research interests include multisource remote sensing image processing,GIS & GIS system developing, high-performance computation (HPC) and its application in processing RS image, support vector machine (SVM) algorith. Codice articolo 158964221

Contatta il venditore

Compra nuovo

EUR 22,32
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jiang Lin Qin
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points withBooks on Demand GmbH, Überseering 33, 22297 Hamburg 84 pp. Englisch. Codice articolo 9783659978203

Contatta il venditore

Compra nuovo

EUR 23,90
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Jiang Lin Qin
ISBN 10: 3659978205 ISBN 13: 9783659978203
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points with 3 C absolute error. Our SVM approach overcomes shortcomings of classical temperature remote sensing technologies, and is the first report of such application. Codice articolo 9783659978203

Contatta il venditore

Compra nuovo

EUR 23,90
Convertire valuta
Spese di spedizione: EUR 60,72
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello