5 The Mathematical Theory of Iterative Methods.- 5.1 Several results from functional analysis.- 5.1.1 Linear spaces.- 5.1.2 Operators in linear normed spaces.- 5.1.3 Operators in a Hilbert space.- 5.1.4 Functions of a bounded operator.- 5.1.5 Operators in a finite-dimensional space.- 5.1.6 The solubility of operator equations.- 5.2 Difference schemes as operator equations.- 5.2.1 Examples of grid-function spaces.- 5.2.2 Several difference identities.- 5.2.3 Bounds for the simplest difference operators.- 5.2.4 Lower bounds for certain difference operators.- 5.2.5 Upper bounds for difference operators.- 5.2.6 Difference schemes as operator equations in abstract spaces.- 5.2.7 Difference schemes for elliptic equations with constant coefficients.- 5.2.8 Equations with variable coefficients and with mixed derivatives.- 5.3 Basic concepts from the theory of iterative methods.- 5.3.1 The steady state method.- 5.3.2 Iterative schemes.- 5.3.3 Convergence and iteration counts.- 5.3.4 Classification of iterative methods.- 6 Two-Level Iterative Methods.- 6.1 Choosing the iterative parameters.- 6.1.1 The initial family of iterative schemes.- 6.1.2 The problem for the error.- 6.1.3 The self-adjoint case.- 6.2 The Chebyshev two-level method.- 6.2.1 Construction of the set of iterative parameters.- 6.2.2 On the optimality of the a priori estimate.- 6.2.3 Sample choices for the operator D.- 6.2.4 On the computational stability of the method.- 6.2.5 Construction of the optimal sequence of iterative parameters.- 6.3 The simple iteration method.- 6.3.1 The choice of the iterative parameter.- 6.3.2 An estimate for the norm of the transformation operator.- 6.4 The non-self-adjoint case. The simple iteration method.- 6.4.1 Statement of the problem.- 6.4.2 Minimizing the norm of the transformation operator.- 6.4.3 Minimizing the norm of the resolving operator.- 6.4.4 The symmetrization method.- 6.5 Sample applications of the iterative methods.- 6.5.1 A Dirichlet difference problem for Poisson’s equation in a rectangle.- 6.5.2 A Dirichlet difference problem for Poisson’s equation in an arbitrary region.- 6.5.3 A Dirichlet difference problem for an elliptic equation with variable coefficients.- 6.5.4 A Dirichlet difference problem for an elliptic equation with mixed derivatives.- 7 Three-Level Iterative Methods.- 7.1 An estimate of the convergence rate.- 7.1.1 The basic family of iterative schemes.- 7.1.2 An estimate for the norm of the error.- 7.2 The Chebyshev semi-iterative method.- 7.2.1 Formulas for the iterative parameters.- 7.2.2 Sample choices for the operator D.- 7.2.3 The algorithm of the method.- 7.3 The stationary three-level method.- 7.3.1 The choice of the iterative parameters.- 7.3.2 An estimate for the rate of convergence.- 7.4 The stability of two-level and three-level methods relative to a priori data.- 7.4.1 Statement of the problem.- 7.4.2 Estimates for the convergence rates of the methods.- 8 Iterative Methods of Variational Type.- 8.1 Two-level gradient methods.- 8.1.1 The choice of the iterative parameters.- 8.1.2 A formula for the iterative parameters.- 8.1.3 An estimate of the convergence rate.- 8.1.4 Optimality of the estimate in the self-adjoint case.- 8.1.5 An asymptotic property of the gradient methods in the self-adjoint case.- 8.2 Examples of two-level gradient methods.- 8.2.1 The steepest-descent method.- 8.2.2 The minimal residual method.- 8.2.3 The minimal correction method.- 8.2.4 The minimal error method.- 8.2.5 A sample application of two-level methods.- 8.3 Three-level conjugate-direction methods.- 8.3.1 The choice of the iterative parameters. An estimate of the convergence rate.- 8.3.2 Formulas for the iterative parameters. The three-level iterative scheme.- 8.3.3 Variants of the computational formulas.- 8.4 Examples of the three-level methods.- 8.4.1 Special cases of the conjugate-direction methods.- 8.4.2 Locally optimal three-level methods.- 8.5 Accelerating the convergence of two-level methods in the self-adjoint case.- 8.5.1 An algorithm for the acceleration process.- 8.5.2 An estimate of the effectiveness.- 8.5.3 An example.- 9 Triangular Iterative Methods.- 9.1 The Gauss-Seidel method.- 9.1.1 The iterative scheme for the method.- 9.1.2 Sample applications of the method.- 9.1.3 Sufficient conditions for convergence.- 9.2 The successive over-relaxation method.- 9.2.1 The iterative scheme. Sufficient conditions for covergence.- 9.2.2 The choice of the iterative parameter.- 9.2.3 An estimate of the spectral radius.- 9.2.4 A Dirichlet difference problem for Poisson’s equation in a rectangle.- 9.2.5 A Dirichlet difference problem for an elliptic equation with variable coefficients.- 9.3 Triangular methods.- 9.3.1 The iterative scheme.- 9.3.2 An estimate of the convergence rate.- 9.3.3 The choice of the iterative parameter.- 9.3.4 An estimate for the convergence rates of the Gauss-Seidel and relaxation methods.- 10 The Alternate-Triangular Method.- 10.1 The general theory of the method.- 10.1.1 The iterative scheme.- 10.1.2 Choice of the iterative parameters.- 10.1.3 A method for finding ? and ?.- 10.1.4 A Dirichlet difference problem for Poisson’s equation in a rectangle.- 10.2 Boundary-value difference problems for elliptic equations in a rectangle.- 10.2.1 A Dirichlet problem for an equation with variable coefficients.- 10.2.2 A modified alternate-triangular method.- 10.2.3 A comparison of the variants of the method.- 10.2.4 A boundary-value problem of the third kind.- 10.2.5 A Dirichlet difference problem for an equation with mixed derivatives.- 10.3 The alternate-triangular method for elliptic equations in arbitrary regions.- 10.3.1 The statement of the difference problem.- 10.3.2 The construction of an alternate-triangular method.- 10.3.3 A Dirichlet problem for Poisson’s equation in an arbitrary region.- 11 The Alternating-Directions Method.- 11.1 The alternating-directions method in the commutative case.- 11.1.1 The iterative scheme for the method.- 11.1.2 The choice of the parameters.- 11.1.3 A fractionally-linear transformation.- 11.1.4 The optimal set of parameters.- 11.2 Sample applications of the method.- 11.2.1 A Dirichlet difference problem for Poisson’s equation in a rectangle.- 11.2.2 A boundary-value problem of the third kind for an elliptic equation with separable variables.- 11.2.3 A high-accuracy Dirichlet difference problem.- 11.3 The alternating-directions method in the general case.- 11.3.1 The case of non-commuting operators.- 11.3.2 A Dirichlet difference problem for an elliptic equation with variable coefficients.- 12 Methods for Solving Equationswith Indefinite and Singular Operators.- 12.1 Equations with real indefinite operators.- 12.1.1 The iterative scheme. The choice of the iterative parameters.- 12.1.2 Transforming the operator in the self-adjoint case.- 12.1.3 The iterative method with the Chebyshev parameters.- 12.1.4 Iterative methods of variational type.- 12.1.5 Examples.- 12.2 Equations with complex operators.- 12.2.1 The simple iteration method.- 12.2.2 The alternating-directions method.- 12.3 General iterative methods for equations with singular operators.- 12.3.1 Iterative schemes in the case of a non-singular operator B.- 12.3.2 The minimum-residual iterative method.- 12.3.3 A method with the Chebyshev parameters.- 12.4 Special methods.- 12.4.1 A Neumann difference problem for Poisson’s equation in a rectangle.- 12.4.2 A direct method for the Neumann problem.- 12.4.3 Iterative schemes with a singular operator B.- 13 Iterative Methods for Solving Non-Linear Equations.- 13.1 Iterative methods. The general theory.- 13.1.1 The simple iteration method for equations with a monotone operator.- 13.1.2 Iterative methods for the case of a differentiate operator.- 13.1.3 The Newton-Kantorovich method.- 13.1.4 Two-stage iterative methods.- 13.1.5 Other iterative methods.- 13.2 Methods for solving non-linear difference schemes.- 13.2.1 A difference scheme for a one-dimensional elliptic quasi-linear equation.- 13.2.2 The simple iteration method.- 13.2.3 Iterative methods for quasi-linear elliptic difference equations in a rectangle.- 13.2.4 Iterative methods for weakly-nonlinear equations.- 14 Example Solutions of Elliptic Grid Equations.- 14.1 Methods for constructing implicit iterative schemes.- 14.1.1 The regularizer principle in the general theory of iterative methods.- 14.1.2 Iterative schemes with a factored operator.- 14.1.3 A method for implicity inverting the operator B (a two-stage method).- 14.2 Examples of solving elliptic boundary-value problems.- 14.2.1 Direct and iterative methods.- 14.2.2 A high-accuracy Dirichlet difference problem in the multi-dimensional case.- 14.2.3 A boundary-value problem of the third kind for an equation with mixed derivatives in a rectangle.- 14.2.4 Iterative methods for solving a difference problem.- 14.3 Systems of elliptic equations.- 14.3.1 A Dirichlet problem for systems of elliptic equations in a p-dimensional parallelipiped.- 14.3.2 A system of equations from elasticity theory.- 14.4 Methods for solving elliptic equations in irregular regions.- 14.4.1 Difference problems in regions of complex form and methods for their solution.- 14.4.2 Decomposition of regions.- 14.4.3 An algorithm for the domain decomposition method.- 14.4.4 The method of domain augmentation to a rectangle.- 15 Methods for Solving Elliptic Equationsin Curvilinear Orthogonal Coordinates.- 15.1 Posing boundary-value problems for differential equations.- 15.1.1 Elliptic equations in a cylindrical system of coordinates.- 15.1.2 Boundary-value problems for equations in a cylindrical coordinate system.- 15.2 The solution of difference problems in cylindrical coordinates.- 15.2.1 Difference schemes without mixed derivatives in the axially-symmetric case.- 15.2.2 Direct methods.- 15.2.3 The alternating-directions method.- 15.2.4 The solution of equations defined on the surface of a cylinder.- 15.3 Solution of difference problems in polar coordinate systems.- 15.3.1 Difference schemes for equations in a circle or a ring.- 15.3.2 The solubility of the boundary-value difference problems.- 15.3.3 The superposition principle for a problem in a circle.- 15.3.4 Direct methods for solving equations in a circle or a ring.- 15.3.5 The alternating-directions method.- 15.3.6 Solution of difference problems in a ring sector.- 15.3.7 The general variable-coefficients case.- Appendices.- Construction of the minimax polynomial.- Translator’s note.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 18,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Antiquariat Bookfarm, Löbnitz, Germania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 65 SAM Vol.2 9783764322779 Sprache: Englisch Gewicht in Gramm: 1000. Codice articolo 2497705
Quantità: 1 disponibili
Da: Munster & Company LLC, ABAA/ILAB, Corvallis, OR, U.S.A.
Condizione: Good. Birkhauser Verlag, 1989. No dust jacket; spine ends/bottom edges very lightly bumped; edges lightly soiled; ffep faintly foxed with light erasures; binding tight; cover and interior intact and exceptionally clean; due to the weight of this item, additional shipping charges may apply. hardcover. Good. Codice articolo 551472
Quantità: 1 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo ERICA75437643227725
Quantità: 1 disponibili
Da: Butterfly Books GmbH & Co. KG, Herzebrock-Clarholz, Germania
Hardcover mit Schutzumschlag. Condizione: Sehr gut. Zustand: SEHR GUTER Zustand! Englisch 1200g. Codice articolo 48523
Quantità: 1 disponibili